Patterns, Principles,
and Practices of
Domain-Driven Design

Scott Millett with Nick Tune

PATTERNS, PRINCIPLES, AND PRACTICES
OF DOMAIN-DRIVEN DESIGN

INTRODUCTION . ..ottt i ittt ci e XXXV
» PARTI THE PRINCIPLES AND PRACTICES OF

DOMAIN-DRIVEN DESIGN
CHAPTER1 What Is Domain-Driven Design? 3
CHAPTER 2 Distilling the Problem Domain......... 15
CHAPTER 3 Focusingonthe Core Domain.......... 31
CHAPTER4 Model-DrivenDesign., 41
CHAPTER5 Domain Model Implementation Patterns 59
CHAPTER 6 Maintaining the Integrity of Domain Models with

Bounded Contexts. ...t 73
CHAPTER7 Context Mappinguiuinti i 91
CHAPTER 8 Application Architecture 105
CHAPTER9 Common Problems for Teams Starting Out with

Domain-Driven Design. i i i 121
CHAPTER 10 Applying the Principles, Practices, and Patterns of DDD 131
» PART Il STRATEGIC PATTERNS: COMMUNICATING

BETWEEN BOUNDED CONTEXTS
CHAPTER 11 Introduction to Bounded Context Integration 151
CHAPTER 12 IntegratingviaMessaging 181
CHAPTER 13 Integrating via HTTP with RPCand REST 245
» PART Il TACTICAL PATTERNS: CREATING EFFECTIVE

DOMAIN MODELS
CHAPTER 14 Introducing the Domain Modeling Building Blocks. 309
CHAPTER 15 Value Objects.o e 329
CHAPTER 16 Entities 361

Continues

CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22

» PART IV
CHAPTER 23
CHAPTER 24
CHAPTER 25

CHAPTER 26

Domain Services.ot 389
DomainEvents 405
Aggregates. 427
Factories. i 469
Repositories e 479
Event Sourcingo 595
DESIGN PATTERNS FOR EFFECTIVE APPLICATIONS
Architecting Application User Interfaces. 645
CQRS: An Architecture of a Bounded Context................ 669
Commands: Application Service Patterns for

Processing BusinessUse Cases, 687
Queries: Domain Reporting. i 713

Patterns, Principles, and
Practices of Domain-Driven Design

Patterns, Principles, and
Practices of Domain-Driven Design

Scott Millett

Nick Tune

A

WFroxX

A Wiley Brand

Patterns, Principles, and Practices of Domain-Driven Design

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-71470-6
ISBN: 978-1-118-71465-2 (ebk)
ISBN: 978-1-118-71469-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951018

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

For my darling buds, Primrose and Albert.

—ScoTrT MILLETT

ABOUT THE AUTHOR

SCOTT MILLETT is the Director of IT for Iglu.com and has been working with .NET since version
1.0. He was awarded the ASP.NET MVP in 2010 and 2011. He is also the author of Professional
ASP.NET Design Patterns and Professional Enterprise .NET. If you would like to contact Scott
about DDD or working at Iglu, feel free to write to him at scotteelbandit.co.uk, by giving him a
tweet @ScottMillett, or becoming friends via https://www.linkedin.com/in/scottmillett.

ABOUT THE CONTRIBUTING AUTHOR

NICK TUNE is passionate about solving business problems, building ambitious products, and
constantly learning. Being a software developer really is his dream job. His career highlight so far
was working at 7digital, where he was part of self-organizing, business-focused teams that deployed
to production up to 25 times per day. His future ambitions are to work on exciting new products,
with passionate people, and continually become a more complete problem solver.

You can learn more about Nick and his views on software development, software delivery, and his
favorite technologies on his website (www.ntcoding.co.uk) and Twitter (entcoding).

ABOUT THE TECHNICAL EDITOR

ANTONY DENYER works as a developer, consultant, and coach and has been developing software
professionally since 2004. He has worked on various projects that have effectively used DDD
concepts and practices. More recently, he has been advocating the use of CQRS and REST in

the majority of his projects. You can reach him via e-mail at antonydenyer.co.uk, and he tweets
from @tonydenyer.

mailto:scott@elbandit.co.uk
https://www.linkedin.com/in/scottmillett
http://www.ntcoding.co.uk

CREDITS

PROJECT EDITOR BUSINESS MANAGER

Rosemarie Graham Amy Knies

TECHNICAL EDITOR ASSOCIATE PUBLISHER

Antony Denyer Jim Minatel

PRODUCTION EDITOR PROJECT COORDINATOR, COVER
Christine O'Connor Brent Savage

COPY EDITOR PROOFREADER

Karen Gill Jenn Bennett, Word One
MANAGER OF CONTENT DEVELOPMENT INDEXER

AND ASSEMBLY Johnna VanHoose Dinse

Mary Beth Wakefield

COVER DESIGNER
MARKETING DIRECTOR Wiley
David Mayhew

COVER IMAGE
MARKETING MANAGER @iStockphoto.com/andynwt
Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

mailto:@iStockphoto.com/andynwt

ACKNOWLEDGMENTS

FIRSTLY | WOULD LIKE to give a massive thanks to Nick Tune for agreeing to help me out with this
project and contributing greatly to many of the chapters. I would also like to thank Rosemarie
Graham, Jim Minatel, and all those at Wrox who have helped to create this book. Thanks as well
to Antony Denyer who did a sterling job as the technical editor. Lastly, many thanks to Isabel Mack
for the grammar pointers and early feedback of the Leanpub draft.

CONTENTS

INTRODUCTION

XXXV

PART I: THE PRINCIPLES AND PRACTICES OF
DOMAIN-DRIVEN DESIGN

CHAPTER 1: WHAT IS DOMAIN-DRIVEN DESIGN? 3
The Challenges of Creating Software for Complex
Problem Domains 4
Code Created Without a Common Language 4
A Lack of Organization 5
The Ball of Mud Pattern Stifles Development 5
A Lack of Focus on the Problem Domain 6
How the Patterns of Domain-Driven Design
Manage Complexity 6
The Strategic Patterns of DDD 6
Distilling the Problem Domain to Reveal
What Is Important 7
Creating a Model to Solve Domain Problems 7
Using a Shared Language to Enable Modeling
Collaboration 7
Isolate Models from Ambiguity and Corruption 8
Understanding the Relationships between Contexts 9
The Tactical Patterns of DDD 9
The Problem Space and the Solution Space 9
The Practices and Principles of Domain-Driven Design 1
Focusing on the Core Domain 1
Learning through Collaboration 1
Creating Models through Exploration and Experimentation 1
Communication 1
Understanding the Applicability of a Model 12
Constantly Evolving the Model 12
Popular Misconceptions of Domain-Driven Design 12
Tactical Patterns Are Key to DDD 12
DDD Is a Framework 13
DDD Is a Silver Bullet 13
The Salient Points 13

CONTENTS

CHAPTER 2: DISTILLING THE PROBLEM DOMAIN 15
Knowledge Crunching and Collaboration 15
Reaching a Shared Understanding through a
Shared Language 16
The Importance of Domain Knowledge 17
The Role of Business Analysts 17
An Ongoing Process 17
Gaining Domain Insight with Domain Experts 18
Domain Experts vs Stakeholders 18
Deeper Understanding for the Business 19
Engaging with Your Domain Experts 19
Patterns for Effective Knowledge Crunching 19
Focus on the Most Interesting Conversations 19
Start from the Use Cases 20
Ask Powerful Questions 20
Sketching 20
Class Responsibility Collaboration Cards 21
Defer the Naming of Concepts in Your Model 21
Behavior-Driven Development 22
Rapid Prototyping 23
Look at Paper-Based Systems 24
Look For Existing Models 24
Understanding Intent 24
Event Storming 25
Impact Mapping 25
Understanding the Business Model 27
Deliberate Discovery 28
Model Exploration Whirlpool 29
The Salient Points 29
CHAPTER 3: FOCUSING ON THE CORE DOMAIN 31
Why Decompose a Problem Domain? 31
How to Capture the Essence of the Problem 32
Look Beyond Requirements 32
Capture the Domain Vision for a Shared Understanding
of What Is Core 32
How to Focus on the Core Problem 33
Distilling a Problem Domain 34
Core Domains 35

XVi

CONTENTS

Treat Your Core Domain as a Product Rather than a Project 36
Generic Domains 37
Supporting Domains 37
How Subdomains Shape a Solution 37
Not All Parts of a System will be Well Designed 37
Focus on Clean Boundaries over Perfect Models 38
The Core Domain Doesn’t Always Have to Be Perfect
the First Time 39
Build Subdomains for Replacement Rather than Reuse 39
What if You Have no Core Domain? 39
The Salient Points 40
CHAPTER 4: MODEL-DRIVEN DESIGN 41
What Is a Domain Model? 42
The Domain versus the Domain Model 42
The Analysis Model 43
The Code Model 43
The Code Model Is the Primary Expression
of the Domain Model 44
Model-Driven Design 44
The Challenges with Upfront Design 44
Team Modeling 45
Using a Ubiquitous Language to Bind the Analysis
to the Code Model 47
A Language Will Outlive Your Software 47
The Language of the Business 48
Translation between the Developers and the Business 48
Collaborating on a Ubiquitous Language 48
Carving Out a Language by Working with Concrete Examples 49
Teach Your Domain Experts to Focus on the Problem
and Not Jump to a Solution 50
Best Practices for Shaping the Language 51
How to Create Effective Domain Models 52
Don't Let the Truth Get in the Way of a Good Model 52
Model Only What Is Relevant 54
Domain Models Are Temporarily Useful 54
Be Explicit with Terminology 54
Limit Your Abstractions 54
Focus Your Code at the Right Level of Abstraction 55
Abstract Behavior Not Implementations 55

xvii

CONTENTS

Implement the Model in Code Early and Often 56
Don't Stop at the First Good Idea 56
When to Apply Model-Driven Design 56
If It's Not Worth the Effort Don’t Try and Model It 56
Focus on the Core Domain 57
The Salient Points 57
CHAPTER 5: DOMAIN MODEL IMPLEMENTATION PATTERNS 59
The Domain Layer 60
Domain Model Implementation Patterns 60
Domain Model 62
Transaction Script 65
Table Module 67
Active Record 67
Anemic Domain Model 67
Anemic Domain Model and Functional Programming 68
The Salient Points 71
CHAPTER 6: MAINTAINING THE INTEGRITY OF DOMAIN

MODELS WITH BOUNDED CONTEXTS 73
The Challenges of a Single Model 74
A Model Can Grow in Complexity 74
Multiple Teams Working on a Single Model 74
Ambiguity in the Language of the Model 75
The Applicability of a Domain Concept 76
Integration with Legacy Code or Third Party Code 78
Your Domain Model Is not Your Enterprise Model 79

Use Bounded Contexts to Divide and Conquer a
Large Model 79
Defining a Model’s Boundary 82
Define Boundaries around Language 82
Align to Business Capabilities 83
Create Contexts around Teams 83
Try to Retain Some Communication between Teams 84
Context Game 85

The Difference between a Subdomain and a

Bounded Context 85
Implementing Bounded Contexts 85
The Salient Points 89

xviii

CONTENTS

CHAPTER 7: CONTEXT MAPPING 91
A Reality Map 92
The Technical Reality 92
The Organizational Reality 93
Mapping a Relevant Reality 94
X Marks the Spot of the Core Domain 94
Recognising the Relationships between
Bounded Contexts 95
Anticorruption Layer 95
Shared Kernel 96
Open Host Service 97
Separate Ways 97
Partnership 98
An Upstream/Downstream Relationship 98
Customer-Supplier 99
Conformist 100
Communicating the Context Map 100
The Strategic Importance of Context Maps 101
Retaining Integrity 101
The Basis for a Plan of Attack 101
Understanding Ownership and Responsibility 101
Revealing Areas of Confusion in Business Work Flow 102
Identifying Nontechnical Obstacles 102
Encourages Good Communication 102
Helps On-Board New Starters 102
The Salient Points 103
CHAPTER 8: APPLICATION ARCHITECTURE 105
Application Architecture 105
Separating the Concerns of Your Application 106
Abstraction from the Complexities of the Domain 106
A Layered Architecture 106
Dependency Inversion 107
The Domain Layer 107
The Application Service Layer 108
The Infrastructural Layers 108
Communication Across Layers 108
Testing in Isolation 109

Don’t Share Data Schema between Bounded Contexts 109

Xix

CONTENTS

Application Architectures versus Architectures for

Bounded Contexts m
Application Services 112
Application Logic versus Domain Logic 114
Defining and Exposing Capabilities 114
Business Use Case Coordination 115
Application Services Represent Use Cases, Not Create,
Read, Update, and Delete 115
Domain Layer As an Implementation Detail 115
Domain Reporting 116
Read Models versus Transactional Models 116
Application Clients 117
The Salient Points 120
CHAPTER 9: COMMON PROBLEMS FOR TEAMS STARTING
OUT WITH DOMAIN-DRIVEN DESIGN 121
Overemphasizing the Importance of Tactical Patterns 122
Using the Same Architecture for All Bounded Contexts 122
Striving for Tactical Pattern Perfection 122
Mistaking the Building Blocks for the Value of DDD 123
Focusing on Code Rather Than the Principles of DDD 123
Missing the Real Value of DDD: Collaboration,
Communication, and Context 124
Producing a Big Ball of Mud Due to Underestimating
the Importance of Context 124
Causing Ambiguity and Misinterpretations by
Failing to Create a UL 125
Designing Technical-Focused Solutions Due
to a Lack of Collaboration 125
Spending Too Much Time on What’s Not Important 126
Making Simple Problems Complex 126
Applying DDD Principles to a Trivial Domain with
Little Business Expectation 126
Disregarding CRUD as an Antipattern 127
Using the Domain Model Pattern for Every Bounded Context 127
Ask Yourself: Is It Worth This Extra Complexity? 127
Underestimating the Cost of Applying DDD 127
Trying to Succeed Without a Motivated and Focused Team 128
Attempting Collaboration When a Domain Expert Is Not
Behind the Project 128
Learning in a Noniterative Development Methodology 128

XX

CONTENTS

Applying DDD to Every Problem 129
Sacrificing Pragmatism for Needless Purity 129
Wasted Effort by Seeking Validation 129
Always Striving for Beautiful Code 130
DDD Is About Providing Value 130
The Salient Points 130
CHAPTER 10: APPLYING THE PRINCIPLES, PRACTICES,
AND PATTERNS OF DDD 131
Selling DDD 132
Educating Your Team 132
Speaking to Your Business 132
Applying the Principles of DDD 133
Understand the Vision 133
Capture the Required Behaviors 134
Distilling the Problem Space 134
Focus on What Is Important 134
Understand the Reality of the Landscape 135
Modeling a Solution 135
All Problems Are Not Created Equal 136
Engaging with an Expert 136
Select a Behavior and Model Around a Concrete Scenario 137
Collaborate with the Domain Expert on the Most
Interesting Parts 137
Evolve UL to Remove Ambiguity 138
Throw Away Your First Model, and Your Second 138
Implement the Model in Code 139
Creating a Domain Model 139
Keep the Solution Simple and Your Code Boring 139
Carve Out an Area of Safety 140
Integrate the Model Early and Often 140
Nontechnical Refactoring 140
Decompose Your Solution Space 140
Rinse and Repeat 141
Exploration and Experimentation 142
Challenge Your Assumptions 142
Modeling Is a Continuous Activity 142
There Are No Wrong Models 142
Supple Code Aids Discovery 143
Making the Implicit Explicit 143

XXi

CONTENTS

Tackling Ambiguity 144
Give Things a Name 145
A Problem Solver First, A Technologist Second 146
Don't Solve All the Problems 146
How Do | Know That | Am Doing It Right? 146
Good Is Good Enough 147
Practice, Practice, Practice 147
The Salient Points 147
BOUNDED CO
CHAPTER 11: INTRODUCTION TO BOUNDED
CONTEXT INTEGRATION 151
How to Integrate Bounded Contexts 152
Bounded Contexts Are Autonomous 153
The Challenges of Integrating Bounded Contexts
at the Code Level 153
Multiple Bounded Contexts Exist within a Solution 153
Namespaces or Projects to Keep Bounded Contexts Separate 154
Integrating via the Database 155
Multiple Teams Working in a Single Codebase 156
Models Blur 156
Use Physical Boundaries to Enforce Clean Models 157
Integrating with Legacy Systems 158
Bubble Context 158
Autonomous Bubble Context 158
Exposing Legacy Systems as Services 160
Integrating Distributed Bounded Contexts 161
Integration Strategies for Distributed Bounded Contexts 161
Database Integration 162
Flat File Integration 163
RPC 164
Messaging 165
REST 165
The Challenges of DDD with Distributed Systems 165
The Problem with RPC 166
RPC Is Harder to Make Resilient 167
RPC Costs More to Scale 167
RPC Involves Tight Coupling 168

XXii

CONTENTS

Distributed Transactions Hurt Scalability and Reliability 169
Bounded Contexts Don't Have to Be Consistent with Each Other 169
Eventual Consistency 169

Event-Driven Reactive DDD 170
Demonstrating the Resilience and Scalability of Reactive Solutions 171
Challenges and Trade-Offs of Asynchronous Messaging 173
Is RPC Still Relevant? 173

SOA and Reactive DDD 174

View Your Bounded Contexts as SOA Services 175
Decompose Bounded Contexts into Business Components 175
Decompose Business Components into Components 176

Going Even Further with Micro Service Architecture 178

The Salient Points 180
CHAPTER 12: INTEGRATING VIA MESSAGING 181
Messaging Fundamentals 182

Message Bus 182

Reliable Messaging 184

Store-and-Forward 184

Commands and Events 185

Eventual Consistency 186

Building an E-Commerce Application with NServiceBus 186

Designing the System 187
Domain-Driven Design 187
Containers Diagrams 188
Evolutionary Architecture 191

Sending Commands from a Web Application 192
Creating a Web Application to Send Messages with NServiceBus 192
Sending Commands 197

Handling Commands and Publishing Events 200
Creating an NServiceBus Server to Handle Commands 200
Configuring the Solution for Testing and Debugging 201
Publishing Events 204
Subscribing to Events 206

Making External HTTP Calls Reliable with Messaging Gateways 208
Messaging Gateways Improve Fault Tolerance 208
Implementing a Messaging Gateway 209
Controlling Message Retries 212

Eventual Consistency in Practice 215
Dealing with Inconsistency 215

Xxiii

CONTENTS

Rolling Forward into New States 215
Bounded Contexts Store All the Data They Need Locally 216
Storage Is Cheap—Keep a Local Copy 217
Common Data Duplication Concerns 223
Pulling It All Together in the Ul 224
Business Components Need Their Own APIs 225

Be Wary of Server-Side Orchestration 226

Ul Composition with AJAX Data 226

Ul Composition with AJAX HTML 226
Sharing Your APIs with the Outside World 227
Maintaining a Messaging Application 227
Message Versioning 228
Backward-Compatible Message Versioning 228
Handling Versioning with NServiceBus's Polymorphic Handlers 229
Monitoring and Scaling 233
Monitoring Errors 233
Monitoring SLAs 234
Scaling Out 235
Integrating a Bounded Context with Mass Transit 235
Messaging Bridge 236
Mass Transit 236
Installing and Configuring Mass Transit 236
Declaring Messages for Use by Mass Transit 238
Creating a Message Handler 239
Subscribing to Events 239
Linking the Systems with a Messaging Bridge 240
Publishing Events 242
Testing It Out 243
Where to Learn More about Mass Transit 243

The Salient Points 243
CHAPTER 13: INTEGRATING VIA HTTP WITH RPC AND REST 245
Why Prefer HTTP? 247
No Platform Coupling 247
Everyone Understands HTTP 247
Lots of Mature Tooling and Libraries 247
Dogfooding Your APIs 247
RPC 248
Implementing RPC over HTTP 248
SOAP 249

XXiv

CONTENTS

Plain XML or JSON: The Modern Approach to RPC
Choosing a Flavor of RPC
REST
Demystifying REST
Resources
Hypermedia
Statelessness
REST Fully Embraces HTTP
What REST Is Not
REST for Bounded Context Integration
Designing for REST
Building Event-Driven REST Systems with ASP.NET Web API
Maintaining REST Applications
Versioning
Monitoring and Metrics
Drawbacks with REST for Bounded Context Integration
Less Fault Tolerance Out of the Box
Eventual Consistency
The Salient Points

259
263
264
264
264
265
265
266
267
268
268
273
303
303
303
304
304
304
305

PART IIl: TACTICAL PATTERNS: CREATING EFFECTIVE
DOMAIN MODELS

CHAPTER 14: INTRODUCING THE DOMAIN MODELING

BUILDING BLOCKS 309

Tactical Patterns 310
Patterns to Model Your Domain 310
Entities 310
Value Objects 314
Domain Services 317
Modules 318
Lifecycle Patterns 318
Aggregates 318
Factories 322
Repositories 323
Emerging Patterns 324
Domain Events 324
Event Sourcing 326

The Salient Points

327

XXV

CONTENTS

CHAPTER 15: VALUE OBJECTS 329
When to Use a Value Object 330
Representing a Descriptive, Identity-Less Concept 330
Enhancing Explicitness 331
Defining Characteristics 333
Identity-Less 333
Attribute-Based Equality 333
Behavior-Rich 337
Cohesive 337
Immutable 337
Combinable 339
Self-Validating 341
Testable 344
Common Modeling Patterns 345
Static Factory Methods 345
Micro Types (Also Known as Tiny Types) 347
Collection Aversion 349
Persistence 351
NoSQL 352
SQL 353
Flat Denormalization 353
Normalizing into Separate Tables 357

The Salient Points 359
CHAPTER 16: ENTITIES 361
Understanding Entities 362
Domain Concepts with Identity and Continuity 362
Context-Dependent 363
Implementing Entities 363
Assigning Identifiers 363
Natural Keys 363
Arbitrarily Generated IDs 364
Datastore-Generated IDs 368
Pushing Behavior into Value Objects and Domain Services 369
Validating and Enforcing Invariants 371
Focusing on Behavior, Not Data 374
Avoiding the “Model the Real-World"” Fallacy 377
Designing for Distribution 378
Common Entity Modeling Principles and Patterns 380

XXVi

CONTENTS

Implementing Validation and Invariants with Specifications 380
Avoid the State Pattern; Use Explicit Modeling 382
Avoiding Getters and Setters with the Memento Pattern 385
Favor Hidden-Side-Effect-Free Functions 386
The Salient Points 388
CHAPTER 17: DOMAIN SERVICES 389
Understanding Domain Services 390
When to Use a Domain Service 390
Encapsulating Business Policies and Processes 390
Representing Contracts 394
Anatomy of a Domain Service 395
Avoiding Anemic Domain Models 395
Contrasting with Application Services 396
Utilizing Domain Services 397
In the Service Layer 397

In the Domain 398
Manually Wiring Up 399
Using Dependency Injection 400
Using a Service Locator 400
Applying Double Dispatch 401
Decoupling with Domain Events 402
Should Entities Even Know About Domain Services? 403

The Salient Points 403
CHAPTER 18: DOMAIN EVENTS 405
Essence of the Domain Events Pattern 406
Important Domain Occurrences That Have Already Happened 406
Reacting to Events 407
Optional Asynchrony 407
Internal vs External Events 408
Event Handling Actions 409
Invoke Domain Logic 409
Invoke Application Logic 410
Domain Events’ Implementation Patterns 410
Use the .Net Framework’s Events Model 410
Use an In-Memory Bus 412
Udi Dahan's Static DomainEvents Class 415
Handling Threading Issues 417

XXVii

CONTENTS

Avoid a Static Class by Using Method Injection 418
Return Domain Events 419
Use an loC Container as an Event Dispatcher 421

Testing Domain Events 422
Unit Testing 422
Application Service Layer Testing 424

The Salient Points 425

CHAPTER 19: AGGREGATES 427

Managing Complex Object Graphs 428
Favoring a Single Traversal Direction 428
Qualifying Associations 430
Preferring IDs Over Object References 431

Aggregates 434
Design Around Domain Invariants 435
Higher Level of Domain Abstraction 435
Consistency Boundaries 435

Transactional Consistency Internally 436

Eventual Consistency Externally 439

Special Cases 440
Favor Smaller Aggregates 441

Large Aggregates Can Degrade Performance 441

Large Aggregates Are More Susceptible to Concurrency Conflicts 442

Large Aggregates May Not Scale Well 442

Defining Aggregate Boundaries 442
eBidder: The Online Auction Case Study 443
Aligning with Invariants 444
Aligning with Transactions and Consistency 446
Ignoring User Interface Influences 448
Avoiding Dumb Collections and Containers 448
Don’t Focus on HAS-A Relationships 449
Refactoring to Aggregates 449
Satisfying Business Use Cases—Not Real Life 449

Implementing Aggregates 450
Selecting an Aggregate Root 450

Exposing Behavioral Interfaces 452

Protecting Internal State 453

Allowing Only Roots to Have Global Identity 454
Referencing Other Aggregates 454

XXViii

CONTENTS

Nothing Outside An Aggregate’s Boundary May

Hold a Reference to Anything Inside 455
The Aggregate Root Can Hand Out Transient
References to the Internal Domain Objects 456
Objects within the Aggregate Can Hold References
to Other Aggregate Roots 456
Implementing Persistence 458
Access to Domain Objects for Reading Can
Be at the Database Level 460
A Delete Operation Must Remove Everything within
the Aggregate Boundary at Once 461
Avoiding Lazy Loading 461
Implementing Transactional Consistency 462
Implementing Eventual Consistency 463
Rules That Span Multiple Aggregates 463
Asynchronous Eventual Consistency 464
Implementing Concurrency 465
The Salient Points 468
CHAPTER 20: FACTORIES 469
The Role of a Factory 469
Separating Use from Construction 470
Encapsulating Internals 470
Hiding Decisions on Creation Type 472
Factory Methods on Aggregates 474
Factories for Reconstitution 475
Use Factories Pragmatically 477
The Salient Points 477
CHAPTER 21: REPOSITORIES 479
Repositories 479
A Misunderstood Pattern 481
Is the Repository an Antipattern? 481
The Difference between a Domain Model and a Persistence Model 482
The Generic Repository 483
Aggregate Persistence Strategies 486
Using a Persistence Framework That Can Map the Domain Model to the
Data Model without Compromise 486
Using a Persistence Framework That Cannot Map the Domain Model
Directly without Compromise 487

XXiX

CONTENTS

Public Getters and Setters 487
Using the Memento Pattern 488
Event Streams 491
Be Pragmatic 491
A Repository Is an Explicit Contract 492
Transaction Management and Units of Work 493
To Save or Not To Save 497
Persistence Frameworks That Track Domain Object Changes 497
Having to Explicitly Save Changes to Aggregates 498
The Repository as an Anticorruption Layer 499
Other Responsibilities of a Repository 500
Entity ID Generation 500
Collection Summaries 502
Concurrency 503
Audit Trails 506
Repository Antipatterns 506
Antipatterns: Don't Support Ad Hoc Queries 506
Antipatterns: Lazy Loading Is Design Smell 507
Antipatterns: Don’t Use Repositories for Reporting Needs 507
Repository Implementations 508
Persistence Framework Can Map Domain Model to Data Model without
Compromise 509
NHibernate Example 509
RavenDB Example 543
Persistence Framework Cannot Map Domain Model Directly without
Compromise 557
Entity Framework Example 558
Micro ORM Example 577
The Salient Points 593
CHAPTER 22: EVENT SOURCING 595
The Limitations of Storing State as a Snapshot 596
Gaining Competitive Advantage by Storing State
as a Stream of Events 597
Temporal Queries 597
Projections 599
Snapshots 599
Event-Sourced Aggregates 600
Structuring 600
Adding Event-Sourcing Capabilities 601

XXX

CONTENTS

Exposing Expressive Domain-Focused APls

Adding Snapshot Support
Persisting and Rehydrating
Creating an Event-Sourcing Repository

Adding Snapshot Persistence and Reloading

Handling Concurrency
Testing
Building an Event Store
Designing a Storage Format
Creating Event Streams
Appending to Event Streams
Querying Event Streams
Adding Snapshot Support
Managing Concurrency
A SQL Server-Based Event Store
Choosing a Schema
Creating a Stream
Saving Events
Loading Events from a Stream
Snapshots

Is Building Your Own Event Store a Good Idea?

Using the Purpose-Built Event Store
Installing Greg Young's Event Store
Using the C# Client Library
Running Temporal Queries
Querying a Single Stream
Querying Multiple Streams
Creating Projections
CQRS with Event Sourcing
Using Projections to Create View Caches
CQRS and Event Sourcing Synergy
Event Streams as Queues
No Two-Phase Commits
Recapping the Benefits of Event Sourcing
Competitive Business Advantage
Expressive Behavior-Focused Aggregates
Simplified Persistence
Superior Debugging
Weighing the Costs of Event Sourcing
Versioning
New Concepts to Learn and Skills to Hone

602
604
605
605
607
609
610
611
612
614
614
615
616
618
621
621
622
623
624
625
627
627
628
627
632
632
634
635
637
638
638
639
639
639
639
639
640
640
640
640
640

XXXi

CONTENTS

New Technologies to Learn and Master 641
Greater Data Storage Requirements 641
Additional Learning Resources 641
The Salient Points 641

PART IV: DESIGN PATTERNS FOR EFFECTIVE APPLICATIONS

CHAPTER 23: ARCHITECTING APPLICATION

USER INTERFACES 645
Design Considerations 646
Owned Uls versus Composed Uls 646
Autonomous 646
Authoritative 647
Some Help Deciding 648
HTML APIs versus Data APIs 649
Client versus Server-Side Aggregation/Coordination 649
Example 1: An HTML API-Based, Server-Side Ul for
Nondistributed Bounded Contexts 651
Example 2: A Data API-Based, Client-Side Ul for
Distributed Bounded Contexts 658
The Salient Points 667
CHAPTER 24: CQRS: AN ARCHITECTURE OF
A BOUNDED CONTEXT 669
The Challenges of Maintaining a Single Model for Two Contexts 670
A Better Architecture for Complex Bounded Contexts 670
The Command Side: Business Tasks 672
Explicitly Modeling Intent 672
A Model Free from Presentational Distractions 674
Handling a Business Request 675
The Query Side: Domain Reporting 676
Reports Mapped Directly to the Data Model 676
Materialized Views Built from Domain Events 678
The Misconceptions of CQRS 679
CQRS Is Hard 679
CQRS Is Eventually Consistent 679
Your Models Need to Be Event Sourced 680
Commands Should Be Asynchronous 680
CQRS Only Works with Messaging Systems 680

You Need to Use Domain Events with CQRS 680

XXXii

CONTENTS

Patterns to Enable Your Application to Scale 680
Scaling the Read Side: An Eventually Consistent Read Model 681
The Impact to the User Experience 682
Use the Read Model to Consolidate Many Bounded Contexts 682
Using a Reporting Database or a Caching Layer 682
Scaling the Write Side: Using Asynchronous Commands 683
Command Validation 683
Impact to the User Experience 684
Scaling It All 684
The Salient Points 685
CHAPTER 25: COMMANDS: APPLICATION SERVICE PATTERNS
FOR PROCESSING BUSINESS USE CASES 687
Differentiating Application Logic and Domain Logic 689
Application Logic 689
Infrastructural Concerns 690
Coordinating Full Business Use Cases 698
Application Services and Framework Integration 698
Domain Logic from an Application Service's Perspective 700
Application Service Patterns 700
Command Processor 701
Publish/Subscribe 704
Request/Reply Pattern 706
async/await 708
Testing Application Services 709
Use Domain Terminology 709
Test as Much Functionality as Possible 710
The Salient Points 712
CHAPTER 26: QUERIES: DOMAIN REPORTING 713
Domain Reporting within a Bounded Context 714
Deriving Reports from Domain Objects 714
Using Simple Mappings 714
Using the Mediator Pattern 718
Going Directly to the Datastore 720
Querying a Datastore 721
Reading Denormalized View Caches 724
Building Projections from Event Streams 726
Setting Up ES for Projections 727

XXXiii

CONTENTS

Creating Reporting Projections
Counting the Number of Events in a Stream
Creating As Many Streams As Required
Building a Report from Streams and Projections
Domain Reporting Across Bounded Contexts
Composed Ul
Separate Reporting Context
The Salient Points

INDEX

XXXiV

728
729
729
730
733
733
734
736

737

INTRODUCTION

WRITING SOFTWARE IS EASY— at least if it’s greenfield software. When it comes to modifying
code written by other developers or code you wrote six months ago, it can be a bit of a bore at best
and a nightmare at worst. The software works, but you aren’t sure exactly how. It contains all the
right frameworks and patterns, and has been created using an agile approach, but introducing new
features into the codebase is harder than it should be. Even business experts aren’t helpful because
the code bears no resemblance to the language they use. Working on such systems becomes a chore,
leaving developers frustrated and devoid of any coding pleasure.

Domain-Driven Design (DDD) is a process that aligns your code with the reality of your problem
domain. As your product evolves, adding new features becomes as easy as it was in the good

old days of greenfield development. Although DDD understands the need for software patterns,
principles, methodologies, and frameworks, it values developers and domain experts working
together to understand domain concepts, policies, and logic equally. With a greater knowledge of
the problem domain and a synergy with the business, developers are more likely to build software
that is more readable and easier to adapt for future enhancement.

Following the DDD philosophy will give developers the knowledge and skills they need to tackle
large or complex business systems effectively. Future enhancement requests won’t be met with an air
of dread, and developers will no longer have stigma attached to the legacy application. In fact, the
term legacy will be recategorized in a developer’s mind as meaning this: a system that continues to
give value for the business.

OVERVIEW OF THE BOOK AND TECHNOLOGY

This book provides a thorough understanding of how you can apply the patterns and practices of
DDD on your own projects, but before delving into the details, it’s good to take a bird’s-eye view of
the philosophy so you can get a sense of what DDD is really all about.

The Problem Space

Before you can develop a solution, you must understand the problem. DDD emphasizes the need to
focus on the business problem domain: its terminology, the core reasons behind why the software
is being developed, and what success means to the business. The need for the development team to
value domain knowledge just as much as technical expertise is vital to gain a deeper insight into the
problem domain and to decompose large domains into smaller subdomains.

Figure I-1 shows a high-level overview of the problem space of DDD that will be introduced in the
first part of this book.

INTRODUCTION

Start with a...

Problem Domain Ubiquitous Language

+ Understand the The Domain Domain Models
Business Wish language of the within the context
domain of a subdomain.

Based on

Described in
terms of

Domain Experts and
the Development Team

Generic
Domains

Domain
Core Model

Domains

Domain

\
isti i N
Distilled into Nt

Domain

Crunch Knowledge

through

The reason why
the system is
being built.
Focus on it.

Domain Vision
Statement

Domain-Driven Design

Can reveal
Problem Space

FIGURE I-1: A blueprint of the problem space of DDD.

The Solution Space

When you have a sound understanding of the problem domain, strategic patterns of DDD can
help you implement a technical solution in synergy with the problem space. Patterns enable core
parts of your system that are crucial to the success of the product to be protected from the generic
areas. Isolating integral components allows them to be modified without having a rippling effect
throughout the system.

Core parts of your product that are sufficiently complex or will frequently change should be
based on a model. The tactical patterns of DDD along with Model-Driven Design will help you
create a useful model of your domain in code. A model is the home to all of the domain logic
that enables your application to fulfill business use cases. A model is kept separate from technical
complexities to enable business rules and policies to evolve. A model that is in synergy with the
problem domain will enable your software to be adaptable and understood by other developers
and business experts.

Figure I-2 shows a high-level overview of the solution space of DDD that is introduced in the first
part of this book.

XXXVi

INTRODUCTION

Applicable to a
context

——

Bounded
Context

Bounded
Context

Ubiquitous Language
| Domain Experts and

! the Development Team
Bounded
Context

Shapes and
enhances

| Create

Domain

Knowledge Model-Driven Design

Core and Complex
subdomains are based
on a model

Domain-Driven Design

Solution Space Adds to and refines
understanding of

FIGURE I-2: A blueprint of the solution space of Domain-Driven Design.

HOW THIS BOOK IS ORGANIZED

This book is divided into four parts. Part I focuses on the philosophy, principles, and practices of
DDD. Part II details the strategic patterns of integrating bounded contexts. Part III covers tactical
patterns for creating effective domain models. Part IV delves into design patterns you can apply to
utilize the domain model and build effective applications.

Part I: The Principles and Practices of
Domain-Driven Design

Part I introduces you to the principles and practices of DDD.

Chapter 1: What Is Domain-Driven Design?

DDD is a philosophy to help with the challenges of building software for complex domains.
This chapter introduces the philosophy and explains why language, collaboration, and context
are the most important facets of DDD and why it is much more than a collection of coding
patterns.

XXXVii

INTRODUCTION

Chapter 2: Distilling the Problem Domain

Making sense of a complex problem domain is essential to creating maintainable software.
Knowledge crunching with domain experts is key to unlocking that knowledge. Chapter 2 details
techniques to enable development teams to collaborate, experiment, and learn with domain experts
to create an effective domain model.

Chapter 3: Focusing on the Core Domain

Chapter 3 explains how to distill large problem domains and identify the most important part of
a problem: the core domain. It then explains why you should focus time and energy in the core
domain and isolate it from the less important supporting and generic domains.

Chapter 4: Model-Driven Design

Business colleagues understand an analysis model based on the problem area you are working
within. Development teams have their own code version of this model. In order for business and
technical teams to collaborate a single model is needed. A ubiquitous language and a shared
understanding of the problem space is what binds the analysis model to the code model. The idea
of a shared language is core to DDD and underpins the philosophy. A language describing the
terms and concepts of the domain, which is created by both the development team and the business
experts, is vital to aid communication on complex systems.

Chapter 5: Domain Model Implementation Patterns

Chapter 5 expands on the role of the domain model within your application and the responsibilities
it takes on. The chapter also presents the various patterns that can be used to implement a domain
model and what situations they are most appropriate for.

Chapter 6: Maintaining the Integrity of Domain Models
with Bounded Contexts

In large solutions more than a single model may exist. It is important to protect the integrity of each
model to remove the chance of ambiguity in the language and concepts being reused inappropriately
by different teams. The strategic pattern known as bounded context is designed to isolate and
protect a model in a context while ensuring it can collaborate with other models.

Chapter 7: Context Mapping

Using a context map to understand the relationships between different models in an application
and how they integrate is vital for strategic design. It is not only the technical integrations that
context maps cover but also the political relationships between teams. Context maps provide a
view of the landscape that can help teams understand their model in the context of the entire
landscape.

XXXViii

INTRODUCTION

Chapter 8: Application Architecture

An application needs to be able to utilize the domain model to satisfy business use cases. Chapter 8
introduces architectural patterns to structure your applications to retain the integrity of your
domain model.

Chapter 9: Common Problems for Teams Starting Out with
Domain-Driven Design

Chapter 9 describes the common issues teams face when applying DDD and why it’s important to
know when not to use it. The chapter also focuses on why applying DDD to simple problems can
lead to overdesigned systems and needless complexity.

Chapter 10: Applying the Principles, Practices, and
Patterns of DDD

Chapter 10 covers techniques to sell DDD and to start applying the principles and practices to your
projects. It explains how exploration and experimentation are more useful to build great software
than trying to create the perfect domain model.

Part Il: Strategic Patterns: Communicating between
Bounded Contexts

Part IT shows you how to integrate bounded contexts, and offers details on the options open
for architecting bounded contexts. Code examples are presented that detail how to integrate
with legacy applications. Also included are techniques for communicating across bounded
contexts.

Chapter 11: Introduction to Bounded Context Integration

Modern software applications are distributed systems that have scalability and reliability
requirements. This chapter blends distributed systems theory with DDD so that you can have the
best of both worlds.

Chapter 12: Integrating via Messaging

A sample application is built showing how to apply distributed systems principles synergistically
with DDD using a message bus for asynchronous messaging.

Chapter 13: Integrating via HTTP with RPC and REST

Another sample application is built showing an alternative approach to building asynchronous
distributed systems. This approach uses standard protocols like Hypertext Transport Protocol
(HTTP), REST, and Atom instead of a message bus.

XXXiX

INTRODUCTION

Part Ill: Tactical Patterns: Creating Effective Domain Models

Part III covers the design patterns you can use to build a domain model in code, along with patterns
to persist your model and patterns to manage the lifecycles of the domain objects that form your
model.

Chapter 14: Introducing the Domain Modeling Building Blocks

This chapter is an introduction to all the tactical patterns at your disposal that allow you to build
an effective domain model. The chapter highlights some best practice guidelines that produce more
manageable and expressive models in code.

Chapter 15: Value Objects

This is an introduction to the DDD modeling construct that represents identityless domain concepts
like money.

Chapter 16: Entities

Entities are domain concepts that have an identity, such as customers, transactions, and hotels. This
chapter covers a variety of examples and complementary implementation patterns.

Chapter 17: Domain Services

Some domain concepts are stateless operations that do not belong to a value object or an entity.
They are known as domain services.

Chapter 18: Domain Events

In many domains, focusing on events reveals greater insight than focusing on just entities. This
chapter introduces the domain event design pattern that allows you to express events more clearly in
your domain model.

Chapter 19: Aggregates

Aggregates are clusters of domain objects that represent domain concepts. Aggregates are a
consistency boundary defined around invariants. They are the most powerful of the tactical
patterns.

Chapter 20: Factories

Factories are a lifecycle pattern that separate use from construction for complex domain objects.

Chapter 21: Repositories

Repositories mediate between the domain model and the underlying data model. They ensure that
the domain model is kept separate from any infrastructure concerns.

x|

INTRODUCTION

Chapter 22: Event Sourcing

Like domain events in Chapter 18, event sourcing is a useful technique for emphasizing, in code,
events that occur in the problem domain. Event sourcing goes beyond domain events by storing the
state of the domain model as events. This chapter provides a number of examples, including ones
that use a purpose-built event store.

Part IV: Design Patterns for Effective Applications

Part IV showcases the design patterns for architecting applications that utilize and protect the
integrity of your domain model.

Chapter 23: Architecting Application User Interfaces

For systems composed of many bounded contexts, the user interface often requires the composition
of data from a number of them, especially when your bounded contexts form a distributed system.

Chapter 24: CQRS: An Architecture of a Bounded Context

CQRS is a design pattern that creates two models where there once was one. Instead of a single
model to handle the two different contexts of reads and writes, two explicit models are created to
handle commands or serve queries for reports.

Chapter 25: Commands: Application Service Patterns for
Processing Business Use Cases

Learn the difference between application and domain logic to keep your model focused and your
system maintainable.

Chapter 26: Queries: Domain Reporting

Business people need information to make informed business and product-development decisions.
A range of techniques for building reports that empower the business is demonstrated in this
chapter.

WHO SHOULD READ THIS BOOK

This book introduces the main themes behind DDD—its practices, patterns, and principles along
with personal experiences and interpretation of the philosophy. It is intended to be used as a
learning aid for those interested in or starting out with the philosophy. It is not a replacement for
Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-
Wesley Professional, 2003). Instead, it takes the concepts introduced by Evans and distills them into
simple straightforward prose, with practical examples so that any developer can get up to speed
with the philosophy before going on to study the subject in more depth.

xli

INTRODUCTION

This book is based on the author’s personal experiences with the subject matter. You may not
always agree with it if you are a seasoned DDD practitioner, but you should still get something out
of it.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. All the source code used in this
book is available for download at www.wrox . com. Specifically for this book, the code download is
on the Download Code tab at: www.wrox.com/go/domaindrivendesign. Although code examples
are presented in C# .NET. The concepts and practices can be applied to any programming language.

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-1187-
1470-6) to find the code. And a complete list of code downloads for all current Wrox books is
available at www . wrox . com/dynamic/books/download. aspx.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, g0 to www.wrox.com/go/domaindrivendesign.

And click the Errata link. On this page you can view all errata that has been submitted for this book
and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport .shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

xlii

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are
a web-based system for you to post messages relating to Wrox books and related technologies
and interact with other readers and technology users. The forums offer a subscription feature
to e-mail you topics of interest of your choosing when new posts are made to the forums. Wrox
authors, editors, other industry experts, and your fellow readers are present on these forums.

http://www.wrox.com
http://www.wrox.com/go/domaindrivendesign
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/go/domaindrivendesign
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml

INTRODUCTION

At http://p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Gotohttp://p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

SUMMARY

The aim of this book is to present the philosophy of DDD in a down-to-earth and practical manner
for experienced developers building applications for complex domains. A focus is placed on the
principles and practices of decomposing a complex problem space as well as the implementation
patterns and best practices for shaping a maintainable solution space. You will learn how to build
effective domain models by using tactical patterns and how to retain their integrity by applying the
strategic patterns of DDD.

By the end of this book, you will have a thorough understanding of DDD. You will be able to
communicate its value and when to use it. You will understand that even though the tactical
patterns of DDD are useful, it is the principles, practices, and strategic patterns that will help you
architect applications for maintenance and scale. With the information gained within this book, you
will be in a better place to manage the construction and maintenance of complex software for large
and complex problem domains.

xliii

http://p2p.wrox.com
http://p2p.wrox.com

PART |

The Principles and Practices of
Domain-Driven Design

» CHAPTER 1:
» CHAPTER 2:
» CHAPTER 3:
» CHAPTER 4:
» CHAPTER 5:
» CHAPTER 6:

» CHAPTER 7:
» CHAPTER 8:
» CHAPTER 9:

» CHAPTER 10:

What Is Domain-Driven Design?
Distilling the Problem Domain

Focusing on the Core Domain
Model-Driven Design

Domain Model Implementation Patterns

Maintaining the Integrity of Domain Models with
Bounded Contexts

Context Mapping
Application Architecture

Common Problems for Teams Starting Out with
Domain-Driven Design

Applying the Principles, Practices, and Patterns
of DDD

What Is Domain-Driven Design?

WHAT'S IN THIS CHAPTER?

An introduction to the philosophy of Domain-Driven Design
The challenges of writing software for complex problem domains

How Domain-Driven Design manages complexity

Y vy v Y

How Domain-Driven Design applies to both the problem and
solution space

\

The strategic and tactical patterns of Domain-Driven Design
> The practices and principles of Domain-Driven Design

> The misconceptions of Domain-Driven Design

Domain-Driven Design (DDD) is a development philosophy defined by Eric Evans in his
seminal work Domain-Driven Design: Tackling Complexity in the Heart of Software
(Addison-Wesley Professional, 2003). DDD is an approach to software development that
enables teams to effectively manage the construction and maintenance of software for complex
problem domains.

This chapter will give you a high-level introduction to DDD’s practices, patterns, and principles
along with an explanation of how it will improve your approach to software development. You
will learn the value of analyzing a problem space and where to focus your efforts. You will
understand why collaboration, communication, and context are so important for the design of
maintainable software.

At the end of this chapter you will have a solid understanding of DDD that will provide
context to the detail of the various patterns, practices, and principles that are contained
throughout this book. However, before we delve into how DDD handles complexity it’s
important to understand what problems can cause software to get into an unmanageable state.

4 | CHAPTER1 WHAT IS DOMAIN-DRIVEN DESIGN?

THE CHALLENGES OF CREATING SOFTWARE FOR COMPLEX
PROBLEM DOMAINS

To understand how DDD can help with the design of software for a nontrivial domain, you must
first understand the difficulties of creating and maintaining software. By far, the most popular
software architectural design pattern for business applications is the Big Ball of Mud (BBoM)
pattern. The definition of BBoM, as defined by Brian Foote and Joseph Yoder in the paper “Big Ball
of Mud,” is “... a haphazardly structured, sprawling, sloppy, duct-tape-and-baling-wire, spaghetti-
code jungle.”

Foote and Yoder use the term BBoM to describe an application that appears to have no
distinguishable architecture (think big bowl of spaghetti versus dish of layered lasagna). The
issue with allowing software to dissolve into a BBoM becomes apparent when routine changes
in workflow and small feature enhancements become a challenge to implement due to the
difficulties in reading and understanding the existing codebase. In his book, Domain-Driven
Design: Tackling Complexity in the Heart of Software (Addison-Wesley Professional, 2003),
Eric Evans describes such systems as containing “code that does something useful, but without
explaining how.” One of the main reasons software becomes complex and difficult to manage
is due to the mixing of domain complexities with technical complexities, as illustrated in
Figure 1-1.

Domain Logic Complexity Legacy Codebase
Complexity

Software
Complexity

Complexity form
Technical Solution
Blurred Lines

FIGURE 1-1: Complexity in software.

Code Created without a Common Language

A lack of focus on a shared language and knowledge of the problem domain results in a codebase
that works but does not reveal the intent of the business. This makes codebases difficult to read

and maintain because translations between the analysis model and the code model can be costly and
€rror prone.

Code without a binding to an analysis model that the business understands will degrade over
time and is therefore more likely to result in an architecture that resembles the BBoM pattern.
Due to the cost of translation teams that do not utilize the rich vocabulary of the problem domain
in code will decrease their chances of discovering new domain concepts when collaborating with
business experts.

The Challenges of Creating Software for Complex Problem Domains | 5

WHAT IS AN ANALYSIS MODEL?

An analysis model is used to describe the logical design and structure of a software
application. It can be represented as sketches or by using modeling languages

such as UML. It is the representation of software that non-technical people can
conceptualize in order to understand how software is constructed.

A Lack of Organization

As highlighted in Figure 1-2, the initial incarnation of a system that resembles BBoM is fast to
produce and often a well-rounded success, but because there is little focus based on the design of
an application around a model of the problem domain, subsequent enhancements are troublesome.
The codebase lacks the required synergy with the business behavior to make change manageable.
Complexities of the problem domain are often mixed with the accidental complexities of the
technical solution.

Initial software Over time without care
incarnation fast to and consideration,
produce software turns to ball
of mud

FIGURE 1-2: Code rot.

The Ball of Mud Pattern Stifles Development

Continuing to persist with an architectural spaghetti-like pattern can lead to a sluggish pace
of feature enhancement. When newer versions of the product are released, they can be buggy
due to the unintelligible mess of the codebase that developers have to deal with. Over time,
the development team increasingly complains about the difficulty of working in such a mess.
Even if resources are added to the project, velocity cannot be increased to a level that satisfies
the business.

6 | CHAPTER1 WHAT IS DOMAIN-DRIVEN DESIGN?

In the end, exasperated by the situation, the request for the dreaded application rewrite is granted.
Without due care and consideration, however, even the greenfield project can fall foul of the same
issues that created the original BBoM. This entire experience can be frustrating for the business that
saw a great return on investment (ROI) in terms of features and speed of delivery at the beginning
but over time, even with additional investment in resources, did not see the sustained evolution of
the product to meet their needs. Ultimately the BBoM is bad news for you as a developer because it’s
a messy bug-prone code base that you hate dealing with. And it’s bad news for the business because
it reduces their capability to rapidly deliver business value

A Lack of Focus on the Problem Domain

Software projects fail when you don’t understand the business domain you are working within

well enough. Typing is not the bottleneck for delivering a product; coding is the easy part of
development. Outside of non-functional requirements creating and keeping a useful software model
of the domain that can fulfill business-use cases is the difficult part. However, the more you invest in
understanding your business domain the better equipped you will be when you are trying to model
it in software to solve its inherent business problems.

WHAT IS A PROBLEM DOMAIN?

A problem domain refers to the subject area for which you are building software.
DDD stresses the need to focus on the domain above anything else when working
on creating software for large-scale and complex business systems. Experts in

the problem domain work with the development team to focus on the areas of

the domain that are useful to be able to produce valuable software. For example,
when writing software for the health industry to record patient treatment, it is not
important to learn to become a doctor. What is important to understand is the
terminology of the health industry, how different departments view patients and
care, what information doctors gather, and what they do with it.

HOW THE PATTERNS OF DOMAIN-DRIVEN DESIGN
MANAGE COMPLEXITY

DDD deals with both the challenge of understanding a problem domain and creating a maintainable
solution that is useful to solve problems within it. It achieves this by utilizing a number of strategic
and tactical patterns.

The Strategic Patterns of DDD

The strategic patterns of DDD distil the problem domain and shape the architecture of an
application.

How the Patterns of Domain-Driven Design Manage Complexity | 7

Distilling the Problem Domain to Reveal What Is Important

Not all of a large software product needs be perfectly designed—in fact trying to do so

would be a waste of effort. Development teams and domain experts use analysis patterns

and knowledge crunching to distill large problem domains into more manageable subdomains.
This distillation reveals the core sub domain—the reason the software is being written. The
core domain is the driving force behind the product under development; it is the fundamental
reason it is being built. DDD emphasizes the need to focus effort and talent on the core
subdomain(s) as this is the area that holds the most value and is key to the success of

the application.

This clarity on where to focus effort can also empower teams to look for open source
off-the-shelf solutions for some of the less important parts of a system, which means that they
have more time to focus on what is important and ensure that the core domain does not become
a BBoM.

Discovering the core domain helps teams understand why they’re producing the software and
what it means for the software to be successful to the business. It is the appreciation for the
business intent that will enable the development team to identify and invest its time in the most
important parts of the system. As the business evolves, so in turn must the software; it needs to
be adaptable. Investment in code quality for the key areas of an application will help it change
with the business. If key areas of the software are not in synergy with the business domain
then, over time, it is likely that the design will rot and turn into a big ball of mud, resulting in
hard-to-maintain software.

Creating a Model to Solve Domain Problems

In the solution space a software model is built for each subdomain to handle domain problems
and to align the software with the business contours. This model is not a model of real life
but more an abstraction built to satisfy the requirements of business use cases while still
retaining the rules and logic of the business domain. The development team should focus as
much energy and effort on the model and domain logic as it does on the pure technical aspects
of the application. To avoid accidental technical complexity the model is kept isolated from
infrastructure code.

All models are not created equal; the most appropriate design patterns are used based on the
complexity needs of each subdomain rather than applying a blanket design to the whole system.
Models for subdomains that are not core to the success of the product or that are not as complex
need not be based on rich object-oriented designs, and can instead utilize more procedural or
data-driven architectures.

Using a Shared Language to Enable Modeling Collaboration

Models are built through the collaboration of domain experts and the development team.
Communication is achieved using an ever-evolving shared language known as the ubiquitous
language (UL) to efficiently and effectively connect a software model to a conceptual analysis
model. The software model is bound to the analysis model by using the same terms of the UL
for its structure and class design. Insights, concepts, and terms that are discovered at a coding

8 | CHAPTER1 WHAT IS DOMAIN-DRIVEN DESIGN?

level are replicated in the UL and therefore the analytical model. Likewise when the business
reveals hidden concepts at the analysis model level this insight is fed back into the code model;
this is the key that enables the domain experts and development teams to evolve the model in
collaboration.

Isolate Models from Ambiguity and Corruption

Models sit within a bounded context, which defines the applicability of the model and ensures that
its integrity is retained. Larger models can be split into smaller models and defined within separate
bounded contexts where ambiguity in terminology exists or where multiple teams are a working in
order to further reduce complexity.

Bounded contexts are used to form a protective boundary around models that helps to prevent
software from evolving into a BBoM. This is achieved by allowing the different models of the overall
solution to evolve within well-defined business contexts without having a negative, rippling impact

on other parts of the system. Models are isolated from infrastructure code to avoid the accidental
complexity of merging technical and business concepts. Bounded contexts also prevent the integrity of
models being corrupt by isolating them from third-party code.

Compare the diagram in Figure 1-3 to Figure 1-2. The diagram shows how the strategic patterns of
DDD have been applied to the software to manage the large problem domain and protect discrete
models within it.

Each context of the system

integrates through well-thought
out interfaces and boundaries

Core part of the system has been
identified and isolated so that it
can be invested in and evolve
independently

\

Small ball of mud, but it's
okay as it is low complexity
and is isolated to prevent
corruption to other contexts

\/

Big problem domain is split up ﬂl:/

into subdomains for easier Data for a context is separated in
understanding. A model in a order to force integration through
context is created for each the object contexts
subdomain

FIGURE 1-3: Applying the strategic patterns of Domain-Driven Design.

How the Patterns of Domain-Driven Design Manage Complexity | 9

THE BIG BALL OF MUD IS NOT ALWAYS AN ANTIPATTERN

Not all parts of a large application will be designed perfectly—nor do they need to
be. Although it’s not advisable to build an entire enterprise software stack following
the BBoM pattern, you can still utilize the pattern. Areas of low complexity or that
are unlikely to be invested in can be built without the need for perfect code quality;
working software is good enough. Sometimes feedback and first-to-market are
core to the success of a product; in this instance, it can make business sense to get
working software up as soon as possible, whatever the architecture. Code quality
can always be improved after the business deems the product to be a success and
worthy of prolonged investment. The key to reaping the benefits of the BBoM is

to define a context around the bounded contexts that use the BBoM to avoid them
corrupting the core subcomain.

Understanding the Relationships between Contexts

DDD understands the need to ensure that teams and the business are clear on how separate models
and contexts work together in order to solve domain problems that span across subdomains.
Context maps help you to understand the bigger picture; they enable teams to understand what
models exist, what they are responsible for, and where their applicability boundaries are. These
maps reveal how different models interact and what data they exchange to fulfill business processes.
The relationships between the connections and more importantly the grey area of process that sits
between them is often not captured or well understood by the business.

The Tactical Patterns of DDD

The tactical patterns of DDD, also known as model building blocks, are a collection of patterns
that help to create effective models for complex bounded contexts. Many of the coding patterns
presented within the collection of tactical patterns have been widely adopted before Evans’s text
and catalogued by the likes of Martin Fowler in Patterns of Enterprise Application Architecture
and Erich Gamma, et al. in Design Patterns: Elements of Reusable Object-Oriented Software. These
patterns are not applicable to all models, and each must be taken on its own merit with the correct
architectural style applied.

The Problem Space and the Solution Space

All of the patterns detailed in this section help to manage the complexity of a problem—aka the
problem space or they manage complexity in the solution—aka the solution space. The problem space,
as shown in Figure 1-4, distils the problem domain into more manageable subdomains. DDD’s impact
in the problem space is to reveal what is important and where to focus effort. In the next chapter we
will look in more detail on the patterns that can help reduce complexity in the problem space.

The solution side of DDD, shown in Figure 1-5, covers patterns that can shape the architecture of
your applications and make it easier to manage.

10 | CHAPTER1 WHAT IS DOMAIN-DRIVEN DESIGN?

Ubiquitous Language

Problem Domain

+ Understand the Domain models
Business Wish Iang;age of the within the context
omain of a subdomain

O

Domain Experts and
the development Team

Described in
terms of

Distilled int
Crunch ¢Domain Knowledge stfedinto

through

The reason why
the system is
being built.
Focus on it.

FIGURE 1-4: DDD patterns that are applicable to the problem space.

Applicable to a
context

\ T — ~
y Core "~
~// Subdomain \

Bounded
Context

| Domain Experts and
the Development Team

Shapes and
enhances

Create

—_— —

Domain

Knowledge Model-Driven Design

Core and Complex
subdomains are
based on a model

Adds to and refines
understanding of

FIGURE 1-5: DDD patterns that are applicable to the solution space.

The Practices and Principles of Domain-Driven Design | 11

THE PRACTICES AND PRINCIPLES OF DOMAIN-DRIVEN DESIGN

Whilst there are many patterns of DDD, there are a number of practices and guiding principles that
are key to success with its philosophy. These key principles, which form the essence of DDD, are
often missed as too much focus is placed upon the tactical design patterns that are used to create
software models.

Focusing on the Core Domain

DDD stresses the need to focus the most effort on the core subdomain. The core subdomain is the
area of your product that will be the difference between it being a success and it being a failure. It’s
the product’s unique selling point, the reason it is being built rather than bought. The core domain
is the area of the product that will give you a competitive advantage and generate real value for your
business. It is vital that all of the team understand what the core domain is.

Learning through Collaboration

DDD stresses the importance of collaboration between the development teams and business
experts to produce useful models to solve problems. Without this collaboration and commitment
from the business experts, much of the knowledge sharing will not be able to take place, and
development teams will not gain deeper insights into the problem domain. It is also true that,
through collaboration and knowledge crunching, the business has the opportunity to learn much
more about its domain.

Creating Models through Exploration and Experimentation

DDD treats the analysis and code models as one. This means that the technical code model is
bound to the analysis model through the shared UL. A breakthrough in the analysis model results
in a change to the code model. A refactoring in the code model that reveals deeper insight is again
reflected in the analysis model and mental models of the business. Breakthroughs only occur when
teams are given time to explore a model and experiment with its design. Spending time prototyping
and experimenting can go a long way in helping you shape a better design. It can also reveal what
a poor design looks like. Eric Evans suggests that for every good design there must be at least three
bad ones, this will prevent teams stopping at the first useful model.

Communication

The ability to effectively describe a model built to represent a problem domain is the foundation of
DDD. This is why, without a doubt, the single most important facet of DDD is the creation of the
UL. Without a shared language, collaboration between the business and development teams to solve
problems would not be effective. Analysis and mental models produced in knowledge-crunching
sessions between the teams need a shared language to bind them to a technical implementation.
Without an effective way to communicate ideas and solutions within a problem domain, design
breakthroughs cannot occur.

It is the collaboration and construction of a UL that makes DDD so powerful. It enables a greater
understanding of the problem domain (for the business and the development team) and more

12 | CHAPTER1 WHAT IS DOMAIN-DRIVEN DESIGN?

effective communication. These key values have a massive impact on projects because while
technical frameworks and methodologies are important, DDD places as much, if not, greater
importance on the analysis and understanding of the problem domain that ultimately makes
software products successful.

Understanding the Applicability of a Model

Each model that is built is understood within the context of its subdomain and described using the
UL. However, in many large models, there can be ambiguity within the UL, with different parts

of an organization having different understandings of a common term or concept. DDD addresses
this by ensuring that each model has its own UL that is valid only in a certain context. Each
context defines a linguistic boundary; ensuring models are understood in a specific context to avoid
ambiguity in language. Therefore a model with overlapping terms is divided into two models, each
clearly defined within its own context. On the implementation side, strategic patterns can enforce
these linguistic boundaries to enable models to evolve in isolation. These strategic patterns result in
organized code that is able to support change and rewriting.

Constantly Evolving the Model

Any developer working on a complex system can write good code and maintain it for a short

while. However, without synergy between the source code and the problem domain, continued
development will likely end up in a codebase that is hard to modify, resulting in a BBoM. DDD
helps with this issue by placing emphasis on the team to continually look at how useful the model is
for the current problem. It challenges the team to evolve and simplify complex models of domains as
and when it gains domain insights. DDD is still no silver bullet and requires dedication and constant
knowledge crunching to produce software that is maintainable for years and not just months. New
business cases may break a previously useful model, or may necessitate changes to make new or
existing concepts more explicit.

POPULAR MISCONCEPTIONS OF DOMAIN-DRIVEN DESIGN

You can think of DDD as a development philosophy; it promotes a new domain-centric way of
thinking. It is the learning process, not the end goal, which is the greatest strength of DDD. Any
team can write a software product to meet the needs of a set of use cases, but teams that put time
and effort into the problem domain they are working on can consistently evolve the product to meet
new business use cases. DDD is not a strict methodology in itself but must be used with some form
of iterative software project methodology to build and evolve a useful model.

Tactical Patterns Are Key to DDD

DDD is not a book on object-oriented design, nor is it a code-centric philosophy or a patterns
language. However, if you search the web for articles on DDD, you would be mistaken for
thinking that it is just a handful of implementation patterns as most articles and blogs on DDD
focus on the modeling patterns. It is much easier for developers to see tactical patterns of

DDD implemented in code rather than conversations between business users and teams on

The Salient Points | 13

a domain that they do not care about or do not understand. This is why DDD is sometimes
mistakenly thought of as nothing more than a pattern language made up of entities, value objects,
and repositories. You can, in fact, implement DDD without ever creating a rich domain model or
using a repository. DDD is less about software design patterns and more about problem solving
through collaboration.

Evans presents techniques to use software design patterns to enable models created by the
development team and business experts to be implemented using the UL. However, without the
practices of analysis, and collaboration, the coding implementation really means very little on
its own. DDD is not code centric; its purpose is not to make elegant code. Software is merely an
artifact of DDD.

DDD Is a Framework

DDD does not require a special framework or database. The model implemented in code follows a
POCO (Plain Old C# Object) principle that ensures it is devoid of any infrastructural code so that
nothing distracts from its domain-centric purpose. An object-oriented methodology is useful for
constructing models, but it is by no means mandatory.

DDD is architecturally agnostic in that there is no single architectural style you must follow to
implement it. A layered architectural style was presented in Evans’s text, but this is not the only
option. Architectural styles can vary because they should apply at the bounded context level and not
the application level. A single product can include one bounded context that follows an event-centric
architecture, another that utilizes a layered rich domain model, and a third that applies the active
record pattern.

DDD Is a Silver Bullet

DDD can take a lot of effort, it requires an iterative development methodology, an engaged business,
and smart developers. All software projects can benefit from the analysis practices of DDD such

as distilling the problem domain as well as the strategic patterns such as isolating a code model

that represents domain logic. However, not all require the tactical patterns of DDD to build a rich
domain model. Trivial domains don’t warrant the level of sophistication as they have little or no
domain logic. For example, it would be a waste of time and costly to apply all of the patterns of
DDD when creating a simple blogging application.

THE SALIENT POINTS

> Domain-Driven Design (DDD) is a development philosophy that is designed to manage the
creation and maintenance of software written for complex problem domains.

> DDD is a collection of patterns, principles, and practices, which can be applied to software
design to manage complexity.

> DDD has two types of patterns. Strategic patterns shape the solution, while tactical patterns
are used to implement a rich domain model. Strategic patterns can be useful for any application
but tactical patterns are only useful if your model is sufficiently rich in domain logic.

14 | CHAPTER1 WHAT IS DOMAIN-DRIVEN DESIGN?

> Distillation of large problem domains into subdomains can reveal the core domain—the area
of most value. Not all parts of a system will be well designed; teams must invest more time in
the core subdomain(s) of a product.

> An abstract model is created for each subdomain to manage domain problems.

> A ubiquitous language is used to bind the analysis model to the code model in order for the
development team and domain experts to collaborate on the design of a model. Learning and
creating a language to communicate about the problem domain is the process of DDD. Code
is the artifact.

> In order to retain the integrity of a model, it is defined within a bounded context. The model
is isolated from infrastructure concerns of the application to separate technical complexities
from business complexities.

> Where there is ambiguity in terminology for a model or multiple teams at work the model
can be split and defined in smaller bounded contexts.

> DDD does not dictate any specific architectural style for development, it only ensures that
the model is kept isolated from technical complexities so that it can focus on domain logic
concerns.

> DDD values a focus on the core domain, collaboration, and exploration with domain
experts, experimentation to produce a more useful model, and an understanding of the
various contexts in play in a complex problem domain.

> DDD is not a patterns language, it is a collaboration philosophy focused on delivery, with
communication playing a central role.

> DDD is a language- and domain-centric approach to software development.

Distilling the Problem Domain

WHAT'S IN THIS CHAPTER?

> The need for knowledge crunching

> How collaboration can foster a shared understanding and a shared
language

> What a domain expert is and why the role is essential

> Effective methods for gaining domain knowledge

Making sense of a complex problem domain in order to create a simple and useful model
requires in-depth knowledge and deep insight that can only be gained through collaboration
with the people that understand the domain inside and out. Continuous experimentation and
exploration in the design of a model is where the power of DDD is realized. Only through
collaboration and a shared understanding of the problem domain can you effectively design
a model to solve the challenges of the business that will be supple enough to adapt as new
requirements surface.

This chapter introduces methods to facilitate the distilling of domain knowledge in order to
better understand the problem domain, which will enable you to build an effective domain

model. Methods to extract important information on the behaviors of an application along
with techniques to discover deep insights within the problem domain are also presented.

KNOWLEDGE CRUNCHING AND COLLABORATION

Complex problem domains will contain a wealth of information, some of which will not be
applicable to solving the problem at hand and will only act to distract from the real focus

of your modelling efforts. Knowledge crunching is the art of distilling relevant information
from the problem domain in order to build a useful model that can fulfill the needs of business
use cases.

16 | CHAPTER2 DISTILLING THE PROBLEM DOMAIN

Knowledge crunching is key to bridging any knowledge gaps for the technical team when designing
a solution for a problem domain based on a set of requirements. In order for a team to produce a
useful model they need to have a deep insight of the problem domain to ensure important concepts
are not overlooked or misunderstood. This can only be done through working in collaboration with
the people that understand the domain the most; i.e., the business users, stakeholders, and subject
matter experts. Without this there is a danger that a technical solution will be produced that is void
of any real domain insight and something that cannot be understood by the business or by other
developers during software maintenance or subsequent enhancements.

Knowledge gathering occurs on whiteboards, working through examples with business experts and
generally brainstorming together. It is the quest to discover and agree on a shared understanding of
the problem domain to produce a model that can fulfill business use cases. The process of knowledge
crunching, as shown in Figure 2-1, starts with the behaviors of a system. The team go through the
scenarios of the application with the business stakeholders and experts. This process is the catalyst
to conversation, deep insight, and a shared understanding of the domain for all participants. It is
therefore vital that stakeholders and subject matter experts are actively involved and engaged.

RicRlEmiBemail Simplify the model as you

understand more about the

. roblem domain
Business Experts P

Knowledge
Crunching

Business
Use Case

Start with a
use case/story/scenario

A useful model that satisfies the
needs of the use case

Development Team

FIGURE 2-1: Knowledge crunching.

Reaching a Shared Understanding through a Shared Language

An output of knowledge crunching and an artifact of the shared understanding is a common
Ubiquitous Language (UL). When modeling with stakeholders and subject matter experts everyone
should make a conscious effort to consistently apply a shared language rich in domain-specific
terminology. This language must be made explicit and be used when describing the domain model
and problem domain. The language should also be used in the code implementation of the model,
with the same terms and concepts used as class names, properties, and method names. It is the
language that enables both the business and development teams to have meaningful communication
about the software. You will learn more about the UL in Chapter 4, “Model-Driven Design.”

Knowledge Crunching and Collaboration | 17

UL is used to bind the code representation of the model to the conceptual model communicated
in language and diagrams, which the business can understand. The UL will contain terminology
from the business as well as new concepts and terms discovered when modeling the use case

of the problem domain. The shared understanding that a UL prevents the need to constantly
translate from a technical model to a business model, thus removing the chance of vital insight
being lost.

The Importance of Domain Knowledge

Domain knowledge is key, even more so than technical know-how. Teams working in a business
with complex processes and logic need to immerse themselves in the problem domain and, like a
sponge, absorb all the relevant domain knowledge. This insight will enable teams to focus on the
salient points and create a model at the heart of their application’s code base that can fulfill the
business use cases and keep doing so over the lifetime of the application.

If you can’t speak to your business users in simple terms about complex concepts in the problem
domain, you are not ready to start developing software within it. To constantly deliver updates at

a rapid pace on the complex applications you are building, even as the whimsical business keeps
chopping and changing features, you need to refocus your efforts during design and development—
you need to focus your team on the business’s problems and not just technologies.

The Role of Business Analysts

It may seem that the role of the traditional business analyst is no longer required in the world of
DDD; however, this is not the case. A business analyst can still help stakeholders flesh out their
initial ideas and capture inputs and outputs of the product. If you have odd whiz-kid developers
and are nervous about putting them in front of domain experts, you can also use business
analysts as facilitators to help communication. What you don’t want to do is remove the direct
communication between the development team and the people who understand that part of the
business the most.

An Ongoing Process

Knowledge crunching is an ongoing process; teams should continually be working toward a simple
view of the problem domain that focuses only on the relevant pieces to aid the creation of a useful
model. As you will learn in Chapter 4, model-driven design and the evolution of a domain model
is an ongoing process. Many models must be rejected in order to ensure you have a useful model
for the current use cases of a system. Collaboration between the development team, business
stakeholders, and subject matter experts should not be constrained to the start of a project.
Knowledge crunching should be an ongoing concern with the business engaged throughout the
lifetime of the application build.

It is important to realize also that with each iteration of the system the model will evolve. It will
change as and when new requirements are added. New behaviors and use cases will require changes
to the model therefore it is important for the technical team and the business experts to understand
that the model is never done; it is only useful for the problems at hand.

18

CHAPTER 2 DISTILLING THE PROBLEM DOMAIN

As each iteration passes the team’s understanding of the problem domain improves. This leads

to deeper insight and design breakthroughs that can vastly simplify a model. When the system is
in use the model may also need to evolve due to technical reasons such as performance or better
understanding of the systems usage. A good model is one that is supple to change; a mature model
holds rich and expressive concepts and terminology of the problem domain and is understood by
both the business and technical teams.

GAINING DOMAIN INSIGHT WITH DOMAIN EXPERTS

The collaboration between the business and the development team is an essential aspect of DDD and
one that is crucial to the success of a product under development. However, it is important to seek out
those who are subject matter experts in the domain you are working in and who can offer you deeper
insight into the problem area. DDD refers to these subject matter experts as domain experts. The
domain experts are the people who deeply understand the business domain from its policies and work
flows, to its nuisances and idiosyncrasies. They are the experts within the business of the domain; they
will rarely, if ever, have the title of domain expert. Instead, look for the product owners, users, and
anyone who has a great grasp and understanding for the domain you are working in regardless of title.

Domain Experts vs Stakeholders

A problem space gives you a set of requirements, inputs, and expected outputs—this is usually
provided from your stakeholders. A solution space contains a model that can meet the needs of the
requirements—this is where domain experts can help.

As shown in Figure 2-2, if your stakeholder is not a domain expert then his role will differ greatly from
that of a domain expert. A stakeholder will tell you what they want the system to do; they will focus
on the inputs and outputs. A domain expert on the other hand will work with you in order to produce
a useful model that can satisfy the needs of a stakeholder and the behaviors of the application.

Simplify the model as you
understand more about the

Stakeholders & problem domain
& Development Team

Domain Experts

Development Team

m Business
} Use Case

Produce

Knowledge
Crunching

Stakeholders communicate The development team and domain
the business goals and the experts knowledge crunch to produce
inputs and outputs of the a model that satisfies the needs of -
system. The team captures the business use case. A useful model that satisfies
these as business use the needs of the use case.
cases.

FIGURE 2-2: The roles of stakeholders, domain experts, and the development team.

Patterns for Effective Knowledge Crunching | 19

Deeper Understanding for the Business

Working with a domain expert will not only enable development teams to gain knowledge about
the problem domain that they are working in but also help the domain expert to qualify her
understanding of the domain. Concepts that may have been implicitly understood by the business
are explicitly defined by the development team and domain expert, which leads to improved
communication within the business itself.

Engaging with Your Domain Experts

To enable a high level of collaboration, it is recommended that you collocate the development team
with domain experts who will be on hand to answer questions and participate during analysis at
impromptu corridor or break room meetings; that’s something that is lost when the communication
is restricted to weekly project meetings. Collaboration is such an essential part of DDD; without it,
a lot of the design breakthroughs would not happen. It is this deeper design insight that makes the
software useful and able to adapt when the business processes change.

If it’s not possible to sit with your domain expert, join her for lunch. Spend as much time as you
can with her, and learn as much as possible. If you thrive on delivering high-quality software
for personal satisfaction or career goals, then eat, sleep, and breathe the domain—you will be
immensely rewarded

MAKE THE MOST OF YOUR DOMAIN EXPERT; YOU NEVER KNOW
WHEN SHE WILL BE GONE

Utilize the time spent with your domain expert; don’t just ask her to produce sets
of requirements or validate ones that you have produced. Actively engage with your
domain expert in knowledge-distilling sessions, whiteboard with her, experiment
and show how you have a desire to learn more about the domain for which you are
producing software.

A domain expert’s time will be precious; meeting her halfway and showing a
genuine interest will display to her that there is value in sharing knowledge.

PATTERNS FOR EFFECTIVE KNOWLEDGE CRUNCHING

Creating a useful model is a collaborative experience; however, business users can also find it

tiring and can deem it unproductive. Business users are busy people. To make your knowledge-
crunching session fun and interactive, you can introduce some facilitation games and other forms of
requirement gathering to engage your business users.

Focus on the Most Interesting Conversations

Don’t bore domain experts and business stakeholders by going through a list of requirements with
them one item at a time. As stated before, a domain expert’s time is precious. Start with the areas
of the problem domain that keep the business up at night—the areas that will make a difference to

20

CHAPTER 2 DISTILLING THE PROBLEM DOMAIN

the business and that are core for the application to be a success. For example, asking the domain
experts which parts of the current system are hard to use, or which manual processes stop them
from doing more creative, value-adding work. Or what changes would increase revenue or improve
operational efficiencies and save money from the bottom line. It’s often a good idea to follow

the money and look for the areas that are costing the business money or preventing them from
increasing revenue. The most interesting conversations will reveal where you should spend most of
your effort on creating a shared understanding and a shared language.

Start from the Use Cases

The best place to start when trying to understand a new domain is by mapping out use cases. A use
case lists the steps required to achieve a goal, including the interactions between users and systems.
Work with business users to understand what users do with the current system, be it a paper-based
process or one that’s computerized. Be careful to listen for domain terminology, because this

forms the start of your shared language for describing and communicating the problem domain.
It’s also useful to read back the use case to the domain expert in your own understanding, so they
can validate that you do understand the use case as they do. Remember: capture a process map of
reality, understand the work flow as it is, and don’t try to jump to a solution too quickly before you
truly understand and appreciate the problem.

Ask Powerful Questions

What does good look like? What is the success criteria of this product? What will make it a
worthwhile endeavor? What is the business trying to achieve? The questions you ask during
knowledge-crunching sessions will go a long way toward your understanding of the importance of
the product you are building and the intent behind it.

Here are some examples to get your domain expert talking and revealing some deeper insight into
the domain:

> Where does the need of this system come from?
> How will this system give value to the business?

> What would happen if this system wasn’t built?

NOTE Greg Young has a great blog post on powerful questions with com-
ments offering many more good examples of questions that can unlock domain
knowledge. You can ﬁnd it at http://goodenoughsoftware.net/2012/02/29/
powerful -questions/.

Sketching

People often learn quicker by seeing visual representations of the concepts they are discussing.
Sketching simple diagrams is a common visualization technique DDD practitioners use to enhance
knowledge-crunching sessions and maximize their time with domain experts.

http://goodenoughsoftware.net/2012/02/29/powerful-questions/
http://goodenoughsoftware.net/2012/02/29/powerful-questions/

Patterns for Effective Knowledge Crunching | 21

You can start by drawing sketches on the whiteboard or on paper. If you keep them quick and
informal you can quickly iterate on them as the conversation progresses.

Unfortunately, many developers find it difficult to create effective diagrams. However, when
drawing sketches, one basic principle can help you to create highly effective diagrams: keep your
diagrams at a consistent level of detail. If you’re talking about high-level concepts like the way
independent software systems communicate to fulfill a business use case, try not to drop down
into lower-level concepts like class or module names that will clutter the diagram. Keeping your
diagrams at a consistent level of detail will prevent you from showing too much detail or too little
detail, meaning everyone can understand what you are trying to convey. It’s often better to create
multiple diagrams each at a different level of detail.

UML is a wonderful language you can use to communicate complex systems in an understandable
manner with little or no technical expertise. However it maybe too formal for rapid knowledge-
crunching sessions, as the team will need to retry and model many times. Don’t try to use elaborate
packages such as Visio or Rational Rose to capture a moving model. Instead, sketch out the model
on the whiteboard. You will be less attached to a sketch that took you minutes to draw than

a diagram in Visio that took you most of the morning. If you must write up your knowledge-
crunching sessions, do it at the end when you know the most about the problem domain.

Class Responsibility Collaboration Cards

Capturing information visually is an effective way to quickly communicate ideas and concepts.
However, because DDD is built around the core idea of a shared language, it is important to use
knowledge-gathering techniques that focus on creating a concise and powerful language.

CRC (Class Responsibility Collaboration) cards are divided into three areas and contain the
following information:

> A class name, which represents a concept in the domain
> The responsibilities of the class

> Classes that are associated and are required to fulfill its purpose

CRC cards focus the team and the business experts on thinking about the language of the concepts
in the problem domain.

Defer the Naming of Concepts in Your Model

Naming is important when modeling a domain. However, premature naming can be a problem when
you discover through further knowledge crunching that concepts turn out to be different from what
you first understood them to be. The issue is the association with the word that was chosen as the
original name and the way it shapes your thinking. Greg Young suggests (http://codebetter.com/
gregyoung/2012/02/28/the-gibberish-game-4/) making up words for areas of the model you
are not sure about, using gibberish. I tend to favor using colors, but the idea is the same. Instead of
giving areas or concepts of the model real names, use gibberish until you have understood all the
responsibilities, behavior, and data of a concern. Deferring the naming of concepts in your model
will go a long way toward helping you avoid modeling a reality that you are trying to change to the
business’s benefit.

http://codebetter.com/gregyoung/2012/02/28/the%E2%80%90gibberish%E2%80%90game%E2%80%904/
http://codebetter.com/gregyoung/2012/02/28/the%E2%80%90gibberish%E2%80%90game%E2%80%904/

22 | CHAPTER2 DISTILLING THE PROBLEM DOMAIN

Also look out for overloaded terms. The types of names that you want to avoid are XXXXService
and XXXXManager. If you find yourself appending service or manager to a class or concept, think
more creatively, strive for real intent behind a name. When you feel you have really understood a
part of the model, you will be in a better place to give it a sensible and meaningful name.

Behavior-Driven Development

Behavior-Driven Development (BDD) is a software development process, based on Test-Driven
Development (TDD), which focuses on capturing the behavior of a system and then driving design
from the outside in. BDD uses concrete domain scenarios during conversations with domain experts
and stakeholders to describe the behaviors of a system.

Much like DDD, BDD does not focus on the technical aspects of an application. Where it differs is
that BDD focuses on the software behavior, how the system should behave, whereas DDD focuses
on the domain model at the heart of the software that is used to fulfil the behaviors—a small but
important distinction.

BDD has its own form of UL to specify requirements—an analysis language, if you will, known as
GWT (Given, When, Then). The GWT format helps to structure conversations with domain experts
and reveal the real behaviors of a domain.

To demonstrate how BDD is used, look at how the requirements for a product are captured utilizing
user stories.

An example of a feature for an e-commerce site:

Feature: Free Delivery for Large Orders

Some stories for this feature may be:
In order to increase the average order total, which is $50,
As the marketing manager

I would like to offer free delivery if customers spend $60.

Another story example for this feature:

In order to target different countries that have different spending habits,

As the marketing manager

I would like to set the qualifying order total threshold for each delivery country.

A feature describes a behavior that gives value to the business. In a feature story, a role and benefit
are also included. The clarity of the role that relates to the feature enables the development team,

along with domain experts, to understand who to talk to or who to proxy. The benefit justifies the
existence of the feature, helping to clarify why the business user wants the feature.

To better understand a feature and its behavior, use BDD scenarios to describe the feature under
different use cases. Scenarios start with an initial condition, the Givens. Scenarios then contain one
or more events, the Whens, and then describe the expected outcomes, the Thens.

Patterns for Effective Knowledge Crunching | 23

An example of a BDD scenario:

Scenario: Customer satisfies the spend threshold for free delivery
Given: Threshold for free delivery is set at $60

And: T am a customer who has a basket totaling $50

When: I add an item to my basket costing $11

Then: 1 should be offered free delivery

A further example:

Scenario: Customer does not satisfy the spend threshold for free delivery but triggers message to
up sale

Given: Threshold for free delivery is set at $60

And: T am a customer who has a basket totaling $50

When: I add an item to my basket costing $9

Then: I should be told that if I increase my basket goods total by $1.00, I will be offered free delivery

In addition to being a light way of capturing requirements, the scenarios provide acceptance criteria
that developers and testers can use to determine when a feature is complete, and business users can
use to confirm that the team understands the feature.

Using this method of capturing requirements removes the ambiguity that traditional requirement
documentation can result in while also heavily emphasizing the domain language. The features and
scenarios are a product of collaboration between the development team and business experts, and
can help to shape the UL.

Rapid Prototyping

Favor rapid prototyping during knowledge-crunching sessions. Business users like nothing more
than screen mock-ups, because they reveal so much more about the intent they have behind a
product. Users understand Ul; they can interact with it and act out work flows clearly.

Another form of rapid prototyping is to capture requirements in code. Greg Young calls this code

as analysis; he has a presentation on this topic we can access here: http://skillsmatter.com/
podcast/open-source-dot-net/mystery-ddd. Again, business users will love the fact that you
are writing and creating before their eyes. Starting to code will help focus analysis sessions. Starting
to implement abstract ideas from knowledge crunching will enable you to validate and prove your
model. It also helps to avoid only abstract thinking, which can lead to analysis paralysis (http://
sourcemaking.com/antipatterns/analysis-paralysis).

Coding quickly helps create your powerful questions and helps find missing use cases. Use the code
to identify and solve the problems. After an hour or so of talking, see if you can create a code model
of your brainstorming. I often find that implementing ideas in code helps to cement domain concepts
and prove model designs. This process helps to keep the development team engaged and deeply
engrossed in learning about the domain as they can start to get feedback on a design immediately.

http://skillsmatter.com/podcast/open-source-dot-net/mystery-ddd
http://sourcemaking.com/antipatterns/analysis%E2%80%90paralysis%00%00
http://sourcemaking.com/antipatterns/analysis%E2%80%90paralysis%00%00
http://skillsmatter.com/podcast/open-source-dot-net/mystery-ddd

24 | CHAPTER2 DISTILLING THE PROBLEM DOMAIN

Remember: Only create a code model of what is relevant and within the specific context to solve a
given problem; you can’t effectively model the entire domain. Think small and model around rules;
then build up. Most important, remember that you are writing throw-away code. Don’t stop at the
first useful model, and don’t get too attached to your first good idea.

Look at Paper-Based Systems

If you are developing a solution for a problem domain that does not have an existing software
solution, look to how the business uses language in the current paper-based solution. Some processes
and work flows may not benefit from an elaborate model to handle edge cases. Rare edge-case
scenarios may be better solved by handing power back to the manual process; modeling this may
result in a lot of effort for little business value.

LOOK FOR EXISTING MODELS

Sometimes you don’t need to reinvent the wheel. If you are working in a domain that has been
around for a long time, such as a financial institution, you can bet that it probably follows a known
model. You won’t have time to become an expert in your problem domain, so seek out information
that teaches you more about the domain. Analysis Patterns: Reusable Object Models by Martin
Fowler (Addison-Wesley, 1996) presents many common models in a variety of domains that you can
use as a starting point in discussions.

Models of the problem domain could already exist in the organization. Ask for existing process
maps and work flow diagrams to help you understand the domain at a deeper level. Create a
knowledge base like a wiki with terms and definitions to share with the team. Remember that you
are only as good as your weakest developer; this applies to domain knowledge as much as technical
expertise.

TRY, TRY, AND TRY AGAIN

You won’t get a useful model on the first attempt; you might not even get one on the
second or third attempts. Don’t be afraid of experimentation. Get used to ripping
up designs and starting over. Remember that there is not a correct model, only a
model that is useful for the current context and the set of problems you are facing.

Understanding Intent

Be wary of customers asking for enhancements to existing software, because they will often give you
requirements that are based on the constraints of the current systems rather than what they really
desire. Ask yourself how often you have engaged with a user to really find the motivation behind a
requirement. Have you understood the why behind the what? Once you share and understand the
real needs of a customer, you can often present a better solution. Customers are usually surprised
when you engage them like this, quickly followed by the classic line: “Oh, really? I didn’t know

Look for Existing Models | 25

you could do that!” Remember: You are the enabler. Don’t blindly follow the user’s requirements.
Business users may not be able to write effective features or effectively express goals. You must share
and understand the underlying vision and be aware of what the business is trying to achieve so you
can create real business value.

Event Storming

Event Storming is a workshop activity that is designed to quickly build an understanding of a
problem domain in a fun and engaging way for the business and development teams. Groups of
domain experts, the ones with the answers, and development team members, the ones with the
questions, work together to build a shared understanding of the problem domain. Knowledge
crunching occurs in an open environment that has plenty of space for visual modeling, be that lots
of whiteboards or an endless roll of brown paper.

The problem domain is explored by starting with a domain event; i.e., events that occur within
the problem domain that the business cares about. A Post-it note representing the domain event

is added to the drawing surface and then attention is given to the trigger of that event. An event
could be caused by a user action that is captured and added to the surface as a command. An
external system or another event could be the originator of the event; these are also added to the
canvas. This activity continues until there are no more questions. The team can then start to build
a model around the decision points that are made about events and when they, in turn, produce
new events.

Event storming is an extremely useful activity for cultivating a UL as each event and command is
explicitly named, this goes a long way to producing a shared understating between the developers
and business experts. It can also reveal sub domains and the core domain of the problem domain,
which will be covered in detail in Chapter 3, “Focusing on the Core Domain.” The biggest benefit
however is that it’s fun, engaging, and can be done quickly. Alberto Brandolini created this activity
and more information can be found on his blog at http://ziobrando.blogspot .co.uk/.

Impact Mapping

A new technique for better understanding the intent of business stakeholders is impact mapping.
With impact mapping, you go beyond a traditional requirements document and instead you try
to work out what impacts the business is trying to make. Do they want to increase sales? Is their
goal to increase market share? Do they want to enter a new market? Maybe they want to increase
engagement to create more loyal customers who have a higher lifetime value.

Once you understand the impact the business is trying to make you can play a more effective role
in helping them to achieve it. Significantly for DDD, you will be able to ask better questions during
knowledge-crunching sessions since you know what the business wants to achieve.

Surprisingly, impact mapping is a very informal technique. You simply create mind-map-like
diagrams that accentuate key business information. You work with the business so that, like
knowledge crunching, it is a collaborative exercise that helps to build up a shared vision for the
product. Figure 2-3 shows an example impact map demonstrating an e-commerce company’s desired
impact of selling 25% more bicycles.

http://ziobrando.blogspot.co.uk/

26 | CHAPTER2 DISTILLING THE PROBLEM DOMAIN

A/B test different
machine learning
algorithms

Produce better
recommendations

Data Scientists

Stop using angular.js

Make website faster

Move to single page
application (SPA)

Developers

Reduce abandonment

rate

Simplify checkout
process

Integrate additional
payment providers

Process payments
asynchronously

Enable guest checkouts)

FIGURE 2-3: An impact map.

An impact map, rather obviously, starts with the impact. In Figure 2-3, this is to sell 25% more
bicycles, as mentioned. Directly connected to the impact are the actors—the people who can
contribute to making the desired impact. In Figure 2-3, that would be developers and data scientists.
Child nodes of the actors are the ways in which the actors can help. In Figure 2-3, one way the
developers can help to create the business impact is to improve the performance of the website so
that people are more likely to make a purchase. Finally, the last level of the hierarchy shows the
actual tasks that can be carried out. You can see in Figure 2-3 that one way the developers may be
able to make the website faster is to remove slow frameworks.

On many software projects the developers only get the lower tiers of an impact map—what the
business thinks they need and how they think the developers should achieve it. With an impact map,
though, you can unwind their assumptions and find out what they really want to achieve. And then

Look for Existing Models | 27

you can use your technical expertise to suggest superior alternatives that they would never have
thought of.

Some DDD practitioners rate impact mapping very highly, both when applied with DDD or in
isolation. You are highly encouraged to investigate impact mapping by browsing the website (http://
www . impactmapping.org/) or picking up a copy of the book: “Impact Mapping,” by Gojko Adzic.

Understanding the Business Model

A business model contains lots of useful domain information and accentuates the fundamental goals
of a business. Unfortunately, very few developers take the time to understand the business model of
their employers or even to understand what business models really are.

One of the best ways to learn about a company’s business model is to visualize it using a Business
Model Canvas; a visualization technique introduced by Alexander Osterwalder and Yves Pigneur
in their influential book, “Business Model” highly recommended and very accessible reading for
developers. A Business Model Canvas is extremely useful because it breaks down a business model
into nine building blocks, as shown in Figure 2-4, which illustrates an example Business Model
Canvas for an online sports equipment provider.

Key Partners | Key Activities Value Customer Customer
) Propositions Relationships Segments
% Famous <+ Marketing
athlete A 3 . % Professional % Personal % Professional
% Generating sports assistance athletes
< Famous recommendations por t
athlete B equipmen % Electronic %y Fitness
% Enthusiast b i
+ Sports oporte rellpdhesk& enthusiasts
. elephone .
equipment : ~————p General public
. equipment P
supplier A uip support
% Sports
equipment Key Resources Channels
supplier B
- < Bran ES i
Shipping and Website
company < Extensive
% Payments catalogue
service % Loyalty
provider program
Cost Structure Revenue Streams
%+ Inventory % Product sales
% Salaries % Advertising
% Warehouses/property
% Athlete sponsorships/marketing

FIGURE 2-4: A Business Model Canvas.

http://www.impactmapping.org/
http://www.impactmapping.org/

28

CHAPTER 2 DISTILLING THE PROBLEM DOMAIN

Understanding the nine building blocks of a business model tells you what is important to the
business. Key information like: how it makes money, what its most important assets are, and
crucially its target customers. Each of the sections of a business model is introduced below. For more
information, the “Business Model Generation” book is the ideal learning resource.

> Customer Segments—the different types of customers a business targets. Examples include
niche markets, mass markets, and business-to-business (b2b).

> Value Propositions—the products or services a business offers to its customers. Examples
include physical goods and cloud hosting.

> Channels—how the business delivers its products or services to customers. Examples include
physical shipping and a website.

> Customer Relationships—the types of relationships the business has with each customer
segment. Examples include direct personal assistance and automated electronic help facilities.

> Revenue Streams—the different ways the business makes money. Examples include
advertising revenue and recurring subscription fees.

> Key Resources—a business’s most important assets. Examples include intellectual property
and important employees.

> Key Activities—the activities fundamental to making the business work. Examples include
developing software and analyzing data.

> Key Partnerships—a list of the business’s most significant partners. Examples include
suppliers and consultants.

> Cost Structure—the costs that the business incurs. Examples include salaries, software sub-
scriptions, and inventory.

Armed with the information presented by a Business Model Canvas you will be empowered to ask
meaningful questions of domain experts and help to drive the evolution of the business—not just the
technical implementation. The small effort of finding and understanding your employer’s business
model is well worth it.

Deliberate Discovery

Dan North, the creator of BDD, has published a method for improving domain knowledge

called deliberate discovery (http://dannorth.net/2010/08/30/introducing-deliberate-
discovery/). Instead of focusing on the framework of agile methodologies during planning and
requirement gathering stages, such as the activities of planning poker and story creation, you should
devote time to learning about areas of the problem domain that you are ignorant about. Dan states
that “Ignorance is the single greatest impediment to throughput.” Therefore a greater amount of
domain knowledge will improve your modeling efforts.

At the start of a project teams should make a concerted effort to identify areas of the problem
domain that they are most ignorant of to ensure that these are tackled during knowledge-crunching
sessions. Teams should use knowledge-crunching sessions to identify the unknown unknowns, the
parts of the domain that they have not yet discovered. This should be led by the domain experts
and stakeholder who can help the teams focus on areas of importance and not simply crunching the

http://dannorth.net/2010/08/30/introducing%E2%80%90deliberate%E2%80%90discovery/%00%00
http://dannorth.net/2010/08/30/introducing-deliberate-discovery/

The Salient Points | 29

entire problem domain. This will enable teams to identify the gaps in domain knowledge and deal
with them in a rapid manner.

Model Exploration Whirlpool

Eric Evans, the creator of Domain-Driven Design, has created a draft document named the Model
Exploration Whirlpool (http://domainlanguage.com/ddd/whirlpool/). This document presents
a method of modeling and knowledge crunching that can complement other agile methodologies
and be called upon at any time of need throughout the lifetime of application development. It is used
not as a modeling methodology but rather for when problems are encountered during the creation of
a model. Telltale signs such as breakdowns in communication with the business and overly complex
solution designs or when there is a complete lack of domain knowledge are catalysts to jump into the
process defined in the Model Exploration Whirlpool and crunch domain knowledge.

The whirlpool contains the following activities:

>

Scenario Exploring

A domain expert describes a scenario that the team is worried about or having difficulty with

in the problem domain. A scenario is a sequence of steps or processes that is important to the
domain expert, is core to the application, and that is within the scope of the project. Once

the domain expert has explained the scenario using concrete examples the team understands, the
group then maps the scenario, like event storming in a visual manner in an open space.

Modeling
At the same time of running through a scenario, the team starts to examine the current model
and assesses its usefulness for solving the scenario expressed by the domain expert.

Challenging the Model
Once the team has amended the model or created a new model they then challenge it with
further scenarios from the domain expert to prove its usefulness.

Harvesting and Documenting

Significant scenarios that help demonstrate the model should be captured in documentation.
Key scenarios will form the reference scenarios, which will demonstrate how the model solves
key problems within the problem domain. Business scenarios will change less often than the
model so it is useful to have a collection of important ones as a reference for whenever you
are changing the model. However, don’t try and capture every design decision and every
model; some ideas should be left at the drawing board.

Code Probing
When insight into the problem domain is unlocked and a design breakthrough occurs the
technical team should prove it in code to ensure that it can be implemented.

THE SALIENT POINTS

>

Knowledge crunching is the art of processing domain information to identify the relevant
pieces that can be used to build a useful model.

Knowledge is obtained by developers collaborating with domain experts. Collaboration helps
to fill any knowledge gaps and fosters a shared understanding.

http://domainlanguage.com/ddd/whirlpool/

30

CHAPTER 2 DISTILLING THE PROBLEM DOMAIN

A shared understanding is enabled through a shared language known as the ubiquitous
language (UL).

Knowledge crunching is an ongoing process; collaboration and engagement with the business
should not be constrained to the start of a project. Deep insights and breakthroughs only
happen after living with the problem through many development iterations.

Knowledge is gained around whiteboards, water coolers, brainstorming, and prototyping in a
collaborative manner, with all members of the team at any time of the project.

Domain experts are the subject matter experts of the organization. They are anyone who
can offer insight into the problem domain (users, product owners, business analysts, other
technical teams).

Your stakeholders will give you the requirements of your application but they may not
be best placed to answer detailed questions of the domain. Utilize domain experts when
modeling core or complex areas of the problem domain.

Engage with your domain experts on the most important parts of a system. Don’t simply
read out a list of requirements and ask them to comment on each item.

Plan to change your model; don’t get too attached as a breakthrough in knowledge crunching
may render it obsolete.

When working with domain experts focus on the most important parts of the problem
domain; put most effort into the areas that will make the application a success.

Drive knowledge crunching around the most important uses case of the system. Ask the domain
experts to walk through concrete scenarios of system use cases to help fill knowledge gaps.

Ask powerful questions and learn the intent of the business. Don’t simply implement a set of
requirements but actively engage with the business; work with them, not for them.

Visualize your learning with sketches and event storming techniques. Visualizing a problem
domain can increase collaboration with the business experts and make knowledge-crunching
sessions fun.

Use BDD to focus on the behavior of the application and focus domains experts and
stakeholders around concrete scenarios. BDD is a great catalyst for conversations with
the domain experts and stakeholders. It has a template language to capture behavior in a
standard and actionable way.

Experiment in code to prove the usefulness of the model and to give feedback on the
compromises that a model needs to make for technical reasons.

Look at existing processes and models in the industry to avoid trying to reinvent the wheel
and to speed up the gaining of domain knowledge.

Find out what you don’t know, identify the team’s knowledge gaps early then activate
deliberate discovery. Eliminate unknown unknowns and increase domain knowledge early.

Leverage Eric Evans’ Model Exploration Whirlpool when you need guidance on how to
explore models. The activities in the whirlpool are particularly helpful when you are having
communication breakdowns, overly complex designs, or when the team is entering an area of
the problem domain of which they don’t have much knowledge.

Focusing on the Core Domain

WHAT'S IN THIS CHAPTER?

Why you should distill a large problem domain
How to identify the core domain
How to focus effort on the core domain

The responsibilities of the supporting and generic domains

Y Y Y Y Y

Why not all parts of a system need to be well designed

It’s important to understand that not all parts of a problem are equal. Some parts of the
application are more important than others. Some parts need more attention and investment than
others to make the application a success. During knowledge crunching with domain experts, it’s
important to reduce the noise of what’s unimportant to enable you to focus on what is important.
Model-Driven Design is hard and should only be reserved to the areas of your systems that are
vital to its success. This chapter covers how you can reveal the most important areas of a system
and how by using distillation you can focus on those areas. With the knowledge of where to
focus you can deeply model what is core, and focus on what will make a difference.

WHY DECOMPOSE A PROBLEM DOMAIN?

Large systems built for complex problem domains will be made up of a combination of
components and sub systems, all of which are essential to ensure the entire systems works.
However some parts of the solution will be more valuable than others. It is essential therefore
to focus effort and attention on the areas that are important to the business. You cannot
equally spread effort and quality throughout the entire system, nor do you need to. Trying to
strive for equality will result in a loss of focus on the real area that is essential to get right.

In order to understand the most valuable areas of a problem domain we need to distill it
to reveal what is core. By breaking up the large problem domain we can more effectively

32 | CHAPTER3 FOCUSING ON THE CORE DOMAIN

resource the different areas to ensure the most talented developers are working in the areas of most
importance to the business rather than the areas that may be more technically challenging or that
utilize new frameworks of infrastructure. The subdomains distilled from the large problem domain
are also an input to the way we will architect the solution.

ONE MODEL TO RULE THEM ALL?

It may seem sensible to model the entire problem domain using a single model.
However, this can be problematic because it needs to cater to all the needs of your
domain. This renders the model either too complex or overly generic and devoid

of any behavior. If you have large systems, it is far better and more manageable to
break down the problem space into smaller, more focused models that can be tied
to a specific context. Remember DDD is all about reducing complexity; a single
monothlic model would increase complexity. Instead you should break the problem
domain down so that you are able to create smaller models in the solution space.

HOW TO CAPTURE THE ESSENCE OF THE PROBLEM

To know where to focus effort you need to understand what makes the application worth designing
in the first place. You need to understand the business strategy and why the existence of the software
you are creating will enable it. It is worth asking why the custom software is being written rather than
opting for a commercial off-the-shelf product. How will building an application make a difference to
the business? How does it fit within the strategy of the company? Why is it being built in-house rather
than being outsourced? Does part of the software give the business a competitive edge?

Look Beyond Requirements

Be wary of business users asking for enhancements to existing software, because they will often
give you requirements that are based on the constraints of the current systems rather than what
they really desire. Ask yourself how often you have engaged with a user to really find the motivation
behind a requirement. Have you understood the why behind the what? Once you share and
understand the real needs of a customer, you can often present a better solution. Customers are
usually surprised when you engage them like this, quickly followed by the classic line: “Oh, really?

I didn’t know you could do that!” Remember: You are the enabler. Don’t blindly follow the user’s
requirements. Business users may not be able to write effective features or effectively express goals.
You must share and understand the underlying vision and be aware of what the business is trying to
achieve so you can offer real business value.

Capture the Domain Vision for a
Shared Understanding of What Is Core

Before embarking on any product engagement, always ask for a project overview. In any large
organization, the process of project inception starts long before the development team gets involved.

How to Focus on the Core Problem | 33

Often there will be a small paper on why the company wants to build the software for this initiative
over another. This paper often holds the key to the core domain. The paper is a justification on why
writing the software is a good idea; study this and pick out what is important. Make it explicit by
writing the salient points on the whiteboard so all on the team understand why they are writing the
software.

A domain vision statement can be created at the start of a project to explicitly capture what is
central to the success of the software, what the business goal is, and where the value is. This
message should be shared with the team and even stick it up on a wall in the office as a reminder to
why the software is being written.

AMAZON'S APPROACH TO PRODUCT DEVELOPMENT

Amazon has a unique approach when it comes to forming a domain vision
statement called working backwards (see: http: //www.quora.com/What-is-
Amazons-approach-to-product -development -and-product -management).

For new enhancements, a product manager produces an internal press release
announcing the finished product, listing the benefits the feature brings. If the
intended customer doesn’t feel the benefits are exciting or worthwhile, the product
manager refactors the press release until the feature offers real value for the
customer. At all times, Amazon is focused on the customer and is clear about the
advantage a new feature can bring before it sets out with development.

HOW TO FOCUS ON THE CORE PROBLEM

Large problem domains can be partitioned into subdomains to manage complexity and to
separate the important parts from the rest of the system. Figure 3-1 shows how in the
domain of butchery, a pig is divided into cuts much like a problem space. Understanding the
subdomains of your system

enables you to break down the

problem space. Subdomains

are abstract concepts; don’t

get subdomains confused with

the organizational structure

of a company. Subdomains

represent areas of capability,

define business processes, and

represent the functionality of a

system.

Try not to bring technical

concerns into conversation when

you are analyzing the problem

space. Security is a technical

concern unless your problem FIGURE 3-1: Cuts of a pig.

http://www.quora.com/What-is-Amazons-approach-to-product-development-and-product-management
http://www.quora.com/What-is-Amazons-approach-to-product-development-and-product-management

34

CHAPTER 3 FOCUSING ON THE CORE DOMAIN

space is security. Audit trails and logging are also infrastructural concerns. Instead, keep focused on
the domain first and foremost.

By distilling the problem domain you reduce complexity by dividing and conquering the problem.
Smaller models can be created and understood within the context of a subdomain. This removes the
need for a single large model to represent the entire problem domain. Many of these subdomains that
are defined may be generic to any enterprise business software, such as reporting and notification
needs. These subdomains, which do not define the application, are referred to as generic domains. The
areas that distinguish your company’s unique product offering from a rival’s and define what gives it
a competitive edge in the market are known as your core domains. The core domains are the reason
why you are writing this software yourself. The remainder of the subdomains that make up large-
scale applications are known as supporting domains, which are enablers for the core domain and the
system.

Distilling a Problem Domain

Take the domain model of an online auction site, as shown in Figure 3-2. There are many different
components that make up the large overall system. Some parts will be found in any online system,
but some will be unique to the domain and specific business.

Figure 3-3 shows how the large
problem domain is partitioned into
subdomains. Membership represents
the area of the systems that deals
with the registrations, preferences,
and details of members. The seller
partition represents all the processes
and behaviors that deal with seller
activities. Auction is the area of the
problem domain that deals with
managing the timing of auctions and
dealing with bid activity. Listings

Online Auction

are the catalogues of items that are
available on the auction site. Finally, the
dispute resolution domain deals with

disputes between members and sellers.
The distillation of knowledge after FIGURE 3-2: The domain of an online auction site.

sessions with domain experts should
reveal what’s unique and important about the application you are about to create. You can separate
the subdomains into core, generic, and supporting domains, as shown in Figure 3-4.

In figure 3-4 you can see that the core domains of the online auction site are the seller and the
auction. The seller domain contains the ratings for a seller and the domain logic for determining
seller fees. The auction core domain is the mechanism for running an auction and handling
bids. Both of these areas are vital for the success of the auction site. The membership and listing
domains support the core domains by providing bidders the opportunity to create accounts

How to Focus on the Core Problem | 35

and find items for sale. The dispute
resolution domain is generic in that
it can be served using a commercial
off-the-shelf package; in this scenario
it is merely a ticking system to handle
customer dispute cases.

To know where to invest the most
effort and quality, it’s crucial to
understand where the core domains
are, because these are key to

making the software successful.

This knowledge is distilled from
knowledge-crunching sessions
working in collaboration with domain
experts to understand the most
important aspect of the product under
development.

Core Domains

To understand what’s core to the
product that your business is asking
you to develop, you need to ask
yourself some questions. What are the
parts of the product that will make

it a success? Why are these parts of
the system important? And why can’t
they be bought off the shelf? In other
words, what makes your system worth
building?

The core parts of the system represent
the fundamental competitive advantage
that your company can gain through
the delivery of this software. What’s
core is not always obvious.

If the generic domains should be

Membership

Dispute
Resolution

FIGURE 3-3: The domain of an online auction site distilled
into subdomains.

Membership
(Supporting
Domain)

Seller
(Core Domain)

Auction
(Core Domain)

Listing Dispute
(Supporting Resolution
Domain) (Generic

Domain)

FIGURE 3-4: The distilled domain of an online auction site
partitioned into core, generic, and supporting domains.

brought in and have little development, the core domain is the polar opposite. The core domains
require your best developers—your commandos, if you will. The core domains may not make up the
lion’s share of your company’s technology, but they require the most investment.

What is core certainly changes over time. If you are successful, competitors mimic, so the core
domain must evolve to set your business apart from the rest and keep it ahead of the game. It’s
vital that the development team take this on board and ensure it is in synergy with the values of the

software and the business.

36 | CHAPTER3 FOCUSING ON THE CORE DOMAIN

THE CORE DOMAIN OF POTTERMORE.COM

Pottermore.com is the only place on the web where you can buy digital copies of the
Harry Potter books. Like any e-commerce site, it allows you to browse products,
store products in a basket, and check out. The core domain of the Pottermore site
is not what the customer sees, but rather what he does not. Pottermore books aren’t
DRM-locked (http://www.futurebook.net/content /pottermore-finally-
delivers-harry-potter-e-books-arrive); they are watermarked. This invisible
watermark allows the books that are purchased to be tracked in case they’re hosted
illegally on the web. The core domain of the Pottermore system is the subdomain
that enables this watermarking technology to deter illegal distribution of a book
without infringing on the customer. (The customer can copy the book to any other
of his devices.) This is what’s most important to the business, what sets it apart from
other e-book sellers, and what ensures the system was built rather than being sold on
iTunes or other e-book sellers.

Treat Your Core Domain as a Product Rather Than a Project

One of the fundamental shifts in mentality required for writing software for complex core domains,
from both the development team and the business, is to focus on the product rather than view it as
a standalone project. Often, the development of software for a business product is never finished;
instead, the product under development will live through periods of feature enhancements. The
software is invested in until it is no longer providing value for the business or it can’t be enriched
with further modifications.

Your product is an evolving succession of feature enhancements and tweaks. Just as developers
iterate, so, too, does the business. A good idea becomes better after it is improved upon and
fleshed out over time. Understand the value of the product you are working on and what return on
investment (ROI) it brings to the company. Talk to your business sponsors about the future of the
product to help focus your coding efforts; know what is important to them.

All too often, software for the core domain of a business isn’t viewed as a product that requires care
and attention. Instead, business software sacrifices quality and long-term investment for speed to
market. Too much emphasis is placed on thinking about the project and looming deadlines, rather
than investing in the product for the future. This results in a codebase that is hard to maintain and
enhance, and falls into the architectural pattern of the Big Ball of Mud (BBoM), as discussed in
Chapter 1, “What Is Domain-Driven Design?”

The flip side, however, is a prolonged release date, which is often nonnegotiable if other business
interests depend on the launch date of the software. The solution to this quandary is to look to
descope features to keep quality high and the deadline on track. To be in a position to do this, you
must understand and share the vision and ultimate goal that the software is expected to meet. This
understanding enables you to include only the most important features of the product and ensure
that it delivers the value the business expects.

http://www.futurebook.net/content/pottermore-finally-delivers-harry-potter-e-books-arrive
http://www.futurebook.net/content/pottermore-finally-delivers-harry-potter-e-books-arrive
http://www.futurebook.net/content/pottermore-finally-delivers-harry-potter-e-books-arrive

Not All Parts of a System Will Be Well Designed | 37

Generic Domains

A generic domain is a subdomain that many large business systems have. An example of a generic
domain is an e-mail sending service, an accounts package, or a report suite. These subdomains
aren’t core to the business, but the business can’t operate without them. Because these subdomains
aren’t core and won’t give you a competitive edge, it doesn’t make sense to spend a lot of effort or
investment in building them. Instead, look to buy in software for generic domains. Alternatively, use
junior developers to build these systems, freeing up more experienced resources to work on what’s
core to your business.

Note, however, that a business defined by communication and targeted e-mails on limited-time
offers, like a Groupon or a Wowcher, could have its core domain as a sophisticated e-mail/CRM
system. What is core to one business may well be generic to another.

Supporting Domains

The remaining subdomains in the system are defined as the supporting domains. These are
subdomains that, although not defining what your system does, help to support your core domains.
For example, Amazon’s supporting domains would be the functionality that enables a customer

to browse a catalog for products. Amazon’s product-browsing functionality doesn’t define it as a
company, and neither is it that different from any other e-commerce site, but it does support the
tracking of user journeys to feed a recommendations engine.

As with the generic domains, if possible, you should look to buy off-the-shelf solutions. Failing

that, do not invest heavily in these systems; they need to work but do not require your prolonged
attention. It’s important to note that you may not always need to implement a technical solution to a
supporting domain. Perhaps a manual process could meet the needs of the business while developers
focus on the core domain.

HOW SUBDOMAINS SHAPE A SOLUTION

Within each subdomain a model can be created. Figure 3-5 shows how the online auction site has
been divided into two physical applications. The dispute domain has been fulfilled by an off-the-shelf
package while the core and supporting domains have been built using a custom web application.

NOT ALL PARTS OF A SYSTEM WILL BE WELL DESIGNED

Within each subdomain there will be a model that represents the domain logic and business
rules that are relevant to that area of the system. Not all of these models will be of equal
quality. With an understanding of the various subdomains that comprise your system you can
apportion effort accordingly and apply the model-driven design patterns of DDD to the areas
that will benefit most.

Don’t waste time and effort on refactoring all of your code—ensure your primary focus is on the
core domain. If you end up with working but “messy code” for supporting and generic domains then

38

CHAPTER 3 FOCUSING ON THE CORE DOMAIN

leave it alone. Good is good enough. Leaving small silos of BBoM is fine as long as they are within
clearly defined boundaries. Perfection is an illusion. Perfection should be reserved for only what is
core. The business doesn’t care about quality code for areas that are required but are not key to the
system and which are unlikely to be invested in over time.

Web Based Bespoke Application

Best developers
focus attention here

/
Vid
/ / Dispute Resolution

fulfilled by '
I an off of the shglf

commercial

\ applicatio
/

— /
Models within the supporting domains
need to be good enough

FIGURE 3-5: How a solution maps to the subdomains of the auction system.

Focus on Clean Boundaries Over Perfect Models

The Big Ball of Mud pattern is the most popular software architectural pattern. In large-scale
software systems that have evolved over time there are more than likely areas of the system that
are not perfect. If you have areas of an application that resemble the BBoM pattern then the best
thing to do is to put a boundary around them to prevent the mud spreading into new areas of

the application. Figure 3-6 shows the solution space of an application that has defined explicit
boundaries between the legacy BBoM and the new models. An anti-corruption layer can be used to
prevent one model blurring into another.

ANTICORRUPTION LAYER

An anticorruption layer wraps the communication with legacy or third-party code
to protect the integrity of a bounded context. An anticorruption layer manages
the transformation of one context’s view to another, retaining the integrity of new
code and preventing it from becoming a BBoM. You will learn more about the
anticorruption layer pattern in Chapter 7, “Context Mapping.”

What If You Have No Core Domain? | 39

Web Based Despoke Application

/’-I \—N

Legacy Ball of
Mud for the
Supporting

Domains

A Bounded Context defines the
applicability of a model and ensures
that its integrity is not compromised

A Boundary is placed around Communication between the core
the legacy mess to ensure new ~ . domain and the legacy systems is via
code is not contaminated clearly defined integration points

FIGURE 3-6: Dealing with legacy.

The Core Domain Doesn’t Always Have to Be Perfect
the First Time

In an ideal world, quality software would always be top of your agenda; however, it’s important to

be pragmatic. Sometimes a new system’s core domain could be first to market, or sometimes a business
may not be able to tell if a particular idea will be successful and become core to its success. In this
instance, the business wants to learn quickly and fail fast without putting in a lot of up-front effort.

The first version of a product that is not well understood by the business may not be well crafted. This
is fine, because the business is unsure if it will be invested in over time, and the development team
should understand why the business wants speed of delivery over supple design. However, if the product
is a success and there is value in a prolonged investment in the software, you need to refactor to support
the evolution; otherwise, the technical debt racked up in the rush to deliver starts to become an issue.

Build Subdomains for Replacement Rather Than Reuse

When developing models in subdomains try and build them in isolation with replacement in mind.
Keep them separated from other models, legacy code, and third party services by using clean
boundaries. By coding for replacement rather than reuse you can create good enough supporting
subdomains without wasting effort on perfecting them. In the future they can be replaced by off-
the-shelf solutions or can be rewritten as business needs change.

WHAT IF YOU HAVE NO CORE DOMAIN?

There are many reasons that businesses build rather than buy software. If you can do it cheaper,
faster, or smarter then it’s a good candidate for a custom build. If you find that the software you are
building is all generic or is supporting other applications in your enterprise and therefore you have

40 | CHAPTER3 FOCUSING ON THE CORE DOMAIN

no core domain then don’t try and apply all of the practices and principles of DDD to your project.
You can still benefit from following the strategic patterns of DDD but the Model-Driven Design
tactical patterns could be wasted effort. You will learn more about when to and when not to apply
the model-driven patterns of DDD in Chapter 9, “Common Problems for Teams Starting Out with
Domain-Driven Design.”

THE SALIENT POINTS

>

Y VYV Y Y Y

Distillation is used to break down a large problem domain to discover the core, supporting,
and generic domains.

Distillation helps reduce complexity within the problem space.

Focus and effort should be invested on the core domain. Use your best developers here.
The core domain is the reason you are writing the software.

Consider outsourcing, buying in, or putting juniors on the supporting and generic domains.

A domain vision statement reveals a shared understanding of what is core to the success
of a product. Use domain experts, project initiation documents, and business strategy
presentations to help inform the domain vision statement.

Plan to change the model within the core domain as you learn more about the problem.
Don’t get too attached to a solution—your core domain may change over time.

Not all of a system will be well designed. Focus effort on the core domain. For legacy BBoM
systems define an anti-corruption boundary to avoid new code becoming tangled within the
mess of old.

Model-Driven Design

WHAT'S IN THIS CHAPTER?

» The definition of a domain model

> Binding a code model to the analysis model using a ubiquitous
language

> The importance of a ubiquitous language

> How to collaborate on a ubiquitous language for improved
communication

> Tips on how to create effective domain models

> When you should apply Model-Driven Design

With a deep and shared understanding of the problem domain, along with insight into the
core areas that are fundamental to the success of an application, you are now able to focus on
the solution space. However, it is important to implement in code the analysis model that was
produced during knowledge-crunching sessions; i.e., the model that the business understands.
Traditional software processes keep the code model and analysis model separate, which leads
to an implementation that rarely resembles the blueprint due to new insight and constraints of
the technical solution. DDD acknowledges the need to produce a single model that serves as
an analysis model for business people to understand and which is implemented using the same
terminology and concepts in code.

This process is known as Model-Driven Design and is heavily dependent on Ubiquitous
Language to tie the technical implementation of the model to the analysis model and keep
them in sync throughout the lifetime of the system. As well as detailing Model-Driven
Design and Ubiquitous Language, this chapter also covers patterns to create effective domain
models and the scenarios where Model-Driven Design should be used.

42

CHAPTER 4 MODEL-DRIVEN DESIGN

WHAT IS A DOMAIN MODEL?

The domain model, as shown in Figure 4-1, is at the center of Domain-Driven Design (DDD). It
is formed first as an analysis model through the collaboration between a development team and
business experts during knowledge-crunching sessions. It represents a view, not the reality, of the
problem domain designed only to meet the needs of business use cases. It is described in a shared
language that the team speaks and the diagrams that the team sketches. When it is expressed as
a code implementation, it is bound to the analysis model through the use of the shared language.
Its usefulness comes from its ability to represent complex logic and polices in the domain to solve
business use cases. The model contains only what is relevant to solve problems in the context of
the application being created. It needs to constantly evolve with the business to keep itself useful
and valid.

An Example:

User Interface Shopping Basket Screen

showing box to enter a coupon.

The use case is to apply a coupon
to a basket in order to receive a
discount.

The application layer
is the client of the domain
layer and represents the
use cases of the system.
The domain model represents the
logic of the coupon and how it
calculates a discount for a basket.

The domain layer represents the
logic, processes and concepts of the
domain. It is used to fulfill the uses cases.

FIGURE 4-1: The role of a domain model.

The Domain versus the Domain Model

The domain represents the problem area you are working within. It is the firm reality of the
situation. The domain model, on the other hand, is an abstraction of the problem domain, expressed
as a code implementation that represents a view, not the reality, of the problem. This difference

is highlighted in Figure 4-2. The usefulness of the domain model comes in its ability to represent
complex logic and polices in the domain to solve business problems and not how well it reflects
reality. It also exists in a more abstract space: in the language the team speaks and the diagrams it
sketches. The model is built from the collaboration between the development team and the business

What Is a Domain Model? | 43

experts. The model contains only what is The Problem Space The Solution Space

\

relevant to solve problems in the context of
the application being created. It needs to
constantly evolve with the business to keep
itself useful and valid. The domain model
only exists to help us solve problems; in
order to be effective it needs to have clarity
and be free of technical complexities. This
way both the business and development

teams can collaborate on its design. The reality /// An abstraction of reality
' designed to manage
/ complexity for specific

The Ana|ysis MOdel | business cases

\
~. A Projection of the
“~_ Real Domain

N

Domain Model

Also sometimes known as a business \\
model, an analysis model is a collection *
of artifacts that describe the model of a FIGURE 4-2: The domain versus the domain model.

system. These artifacts can be anything

from cigarette packet sketches to informal UML. The analysis model exists to help both the
development teams and business users to understand the problem domain; it is not a blueprint for
the technical implementation.

The Code Model

DDD doesn’t advocate the removal of the analysis model. Far from it, because there is much value

to be gained from a model that describes the system. Instead, DDD emphasizes the need to keep the
code model, the implementation, in close synergy with the analysis model, the design. This synergy is
achieved by ensuring both models are described and share the UL, as shown in Figure 4-3. The utopia
is a single model that has value in both implementation and design. To achieve this, it is crucial to
keep the code model clean of technical concerns and focused on the domain. In turn, it is important
to have an analysis model that can be implemented—not too abstract or high level to be of any use.

The two models are
bound by the
ubiquitous language

Ubiquitous
Language

o Communication OO
happens because of
@ the ubiquitous @
) language
Domain Experts Development
Team

FIGURE 4-3: The binding between the code and analysis model.

44 | CHAPTER4 MODEL-DRIVEN DESIGN

The Code Model Is the Primary Expression
of the Domain Model

The code model is the realization of the analysis model; it validates the assumptions of the business
and quickly highlights any inconsistencies with the analysis model. If, during the creation of the
code model, issues are found and logic doesn’t seem to fit, the development team should work

with the domain experts to resolve these problems. This update to the code model is reflected in
the analysis model by making changes to work flow and polices that may not have exposed issues
before. Likewise, any changes from a business perspective need to be reflected in the code model.
The code and business models are kept in synergy. The code is the model; the code is the truth.

MODEL-DRIVEN DESIGN

Model-Driven Design is the process of binding an analysis model to a code implementation model,
ensuring that both stay in sync and are useful during evolution. It is the process of validating and
proving the model in practice, because it’s pointless to have an elaborate model if you can’t actually
implement it. Model-Driven Design differs from DDD in that it is focused on implementation and
any constraints that may require changes to an initial model, whereas DDD focuses on language,
collaboration, and domain knowledge. The two complement each other; a Model-Driven Design
approach enables domain knowledge and the shared language to be incorporated into a software
model that mirrors the language and mental models of the business experts. This then supports
collaboration because business experts and software developers are able to solve problems together
as a result of their respective models being valid. Insights gained in either model are shared and
knowledge is increased, leading to better problem solving and clearer communication between the
business and development team.

The Challenges with Upfront Design

Historically, the capturing of requirements for software systems was seen as an activity that could
occur long before coding was due to start. Business experts would talk to business analysts, who in
turn would talk to architects, who would produce an analysis model based on all the information
from the problem domain. This analysis model would then be handed over to the developers, along
with wireframes and work flow diagrams, so they could build the system

As developers start to implement the analysis model in code, they often find a mismatch between
the high-level artifacts produced by architects and the reality of building the system. However,

at this stage there is often no feedback loop for developers to talk to the business and architects, so
the analysis model can be updated and their input enacted. Instead, the developers diverge from the
analysis model, and their implementation often overlooks important and descriptive domain terms
and concepts that would have provided deeper insight and understanding of the domain.

As the development team further evolves away from the analysis model, it becomes less and less
useful. Crucial insight into the model is lost as the development team focuses on abstracting
technical concerns instead of business concepts. In the end the job gets done, but the code bears no
reflection to the original analysis model. The business still believes the original analysis models are
correct and is unaware of the alterations within the code model.

Model-Driven Design | 45

Figure 4-4 shows how the analysis and code models can diverge from each other if the development
team is not involved in domain knowledge crunching.

No feedback loop, descriptive
domain terms lost, deeper insight

into the model is not revealed
Code model no
longer reflects
analysis model

Domain Experts and

° Development Team
Business Analysts

Model evolves with abstraction on

i
1
1
1
1
1
1
1
1
1
1
i
! . .
Create the analysis | [nitial code model t'echnlcal.terms, tgam discovers
model and then hand it matches analysis issues with analysis model {and
over to the developers ! model moves further away from it;
I analysis model is now useless
1
1
| -
1
|
v X
1
1
: I @
</ 1
1
1
Ei \
1
1
—E I
1
1
:
1
Analysis Model : Code Model Code Model Code Model Code Model
1
1
|
. I
Iteration O ! Iteration 1 Iteration 2 Iteration 3 Iteration 4

FIGURE 4-4: The problems with upfront design.

The problem is revealed when later enhancements to the codebase are difficult to implement. The
difficulties are due to the business experts and developers having different models of the business.
The code doesn’t have a synergy with the business processes and is not rich in domain knowledge.

Team Modeling

DDD suggests a more collaborative method of capturing system requirements and understanding
existing work flow. Emphasis is placed on the entire team, with business experts and architects

(as long as they code) having discussions around the problem space. Discussions can include

any documentation or legacy code that is related to the system in question. The idea behind

the collaborative knowledge-crunching sessions is for the developers, testers, business analysts,
architects, and business experts to work as a unified team. This enables the developers and testers
to learn about the meaning behind domain terms, and understand complex logic in the problem
area. It also enables business experts to experience the modeling techniques employed. With an
understanding of modeling, business experts will themselves be able to model and validate designs
with the development team.

46

CHAPTER 4 MODEL-DRIVEN DESIGN

The sharing of information enables business experts to contribute to the software design, and
provides a deeper insight and understanding of the domain to the development team. After a period
of time, developers and business experts will discover the relevant information to build an initial
model of a problem domain. This initial model is put to the test by using domain scenarios: real
problems of the domain to validate its usefulness. Modeling out loud, using the terms and language
of the model, can also help to validate early designs.

The important aspect of modeling together is the constant feedback the development team gets
from the business experts. This leads to the discovery of important concepts and allows the team to
understand what is not important and can be excluded from the model. Breakthroughs in sessions
are manifested as simple abstractions that clarify complex domain concepts and lead to a more
expressive model.

The model is then expressed in code and the team, along with business experts, can gain fast
feedback with early versions of software. Feedback in turn fuels deeper insight, which can be
reflected in the code and analysis models, as highlighted in Figure 4-5.

i)~

Code and analysis
model are in synergy

[ZERES

A change in the code
must result in a change
in the analysis model

FIGURE 4-5: The code model and the analysis model are kept in synergy.

During each iteration, the development team members may come across parts of the model that
they thought were useful and could solve a problem but during implementation had to change. This
knowledge is fed back to the business experts for clarification and to refine their own understanding
of the problem domain. In this process, the code model and analysis model are one, and a change in
one will result in a change to the other.

Figure 4-6 shows how the analysis and code model are in synergy and evolve as one during the
creation of a product.

Using a Ubiquitous Language to Bind the Analysis to the Code Model | 47

Domain Experts and revealed in the analysis
the Development Team model and is updated in

@ Code Model
@ .'.Q A hidden insight is
..
()

the code model

N
— 75

Analysis Model \

Developers and
business experts
knowledge crunch

Code and Analysis model
are in synergy

Domain experts an

business analysts

understand the code model
and help to shape it

Constant feedback and
collaboration helps to
shape both models

FIGURE 4-6: Team modeling.

USING A UBIQUITOUS LANGUAGE TO BIND THE ANALYSIS
TO THE CODE MODEL

The true value of following the Domain-Driven Design (DDD) philosophy is in the collaboration of
developers and domain experts to produce a better understanding of the domain. The code that is
written is just an artifact of that process, albeit an important one. To reach a better understanding,
teams need to communicate effectively. It is the creation of the ubiquitous language (UL) that
enables a deeper understanding that will live on after code is rewritten and replaced.

A UL enables teams to organize both the mental and the code model with ease. It achieves an
unambiguous meaning because of the shared understanding that it brings to the teams. A UL also
provides clarity and consistency in meaning. The language is ultimately expressed in code, but
speech, sketch, and documentation are also important for creating the language. The language is
constantly explored, verified, and refined with new insights and greater knowledge.

A Language Will Outlive Your Software

The usefulness of creating a UL has an impact that goes beyond its application to the current
product under development. It helps define explicitly what the business does, it reveals deeper
insights into the process and logic of the business, and it improves business communication.

48 | CHAPTER4 MODEL-DRIVEN DESIGN

The Language of the Business

I recently went curtain shopping with my wife. Pleated, hang length, interlining—these were all
terms that meant something specific in the domain of curtain makers. Employees in the shop could
spend hours describing what they wanted, but that could lead to ambiguity in meaning. But because
the employees use terms in the domain of the curtain shop, conversations are kept short and concise,
and everybody who understands the domain understands their meanings.

It’s the same with carpenters, financial traders, the military, and nearly every domain you can
imagine. Each has terms and concepts that mean something very particular to them. A secret
language enables complex topics to be covered in concise and meaningful dialogue without the
need for confusing babble. It’s vital for a development team to understand and collaborate on this
language, known as the ubiquitous language (UL). The UL’s terms and concepts are used when
communicating with team members, including domain experts. They’re also used to name classes,
methods, and namespaces in the codebase.

Translation between the Developers and the Business

The business language is a rich dialect with highly descriptive and insightful terminology. However,
if the development team doesn’t engage with domain experts to fully understand the language and
use it within the code implementation, much of its benefit is lost. Developers instead create their
own language and set of abstractions for a problem domain. Without a shared model and UL,
effective communication between the development team and domain experts is a challenge and
requires some form of translation. Translation from domain concepts to technical concepts can be
time consuming and error prone. Vital domain insights can be lost when the team implementing the
code is using a different model than that of the domain expert. Furthermore, lengthy and convoluted
communication is required to explain problems that the team faces in a software implementation
that could be solved easily with a better understanding of the problem domain and a more efficient
way of communicating.

Figure 4-7 shows how a different model in the minds of a developer can make communication with
the domain expert problematic. In the code, the developer is focused on technical abstractions,
design patterns, and design principles, whereas the domain expert is focused on business process
and work flow.

Developers should think in domain terms and concepts, not technical terms, to avoid the need to
translate from business jargon into technical jargon. If the development team makes a mistake when
translating complex logic and work flow, the chance of creating a bug in code significantly increases.

COLLABORATING ON A UBIQUITOUS LANGUAGE

The rich language that the business uses to describe what it does is one ingredient of the UL.
However, when creating a model of the problem domain and implementing it in code, you may need
to create new concepts and terminology. The business may use jargon much in the same way that the
IT community does, with some terms proving to be too generic. The development team and domain
experts need to create new terms and explicitly define the meaning of existing terms to implement
the model in code.

Collaborating on a Ubiquitous Language | 49

A policy owner can add a named
driver. The named driver does not
have to already have a policy
with us.

So a car can be associated to two
customers? | will have to update the
insurance manager and associations
Domain Experts to handle this, plus change the
database relationship.

O The development team’s
interpretation of the concepts
The insurance manager looks after that don’t match the domain
the call center and the sales team. @ experts

He shouldn’t need to be involved.
A customer is a potential policy
owner; he is someone with a
quote. Associations are the policy
holders over vehicles. Is that
what you mean?

Development Team

FIGURE 4-7: Translation costs of the project.

As teams are implementing the model in code, new concepts may appear, often highlighted by
a collection on logic that needs to be named. These discovered terms need to be fed back to the
domain experts for validation and clarification.

Not only must the development team learn the explicit terms and concepts from the business, but
they must collaborate with the domain experts to define the assumed or implicit concepts that may
not have terminology. These concepts must be named by the entire team and included in the shared
UL. The team may also need to create terms for concepts that don’t exist in the problem domain but
have been discovered and labeled during modeling in the software.

The team members must communicate with each other using the UL. The development team must
use it in code, and the domain experts must use it when talking to the team. A shared language
removes the need to translate from business speak into technical language and vice versa. It also
removes the possibility of ambiguity and misinterpretation because everyone understands the
meaning behind the concepts.

The UL should be clear and concise. Technical terms should be removed so they don’t distract from
business concepts. Likewise, domain terms not relevant for the software under creation must not be
allowed to cloud the shared language.

Carving Out a Language by Working with Concrete Examples

As mentioned in Chapter 2, “Distilling the Problem Domain,” to better understand the domain you’re
in, it’s a good idea to take specific examples of domain behavior. Concrete examples of real scenarios

50

CHAPTER 4 MODEL-DRIVEN DESIGN

help to cement processes and concepts within the domain. However, it’s important to reveal the intention
of the business process and not the implementation. Talk only in business terms; don’t get technical.

In the following dialogue, a business user is describing the process of customers at an e-commerce
site requesting a replacement for an order that wasn’t delivered:

When a customer doesn’t receive her goods, she can request a new order for free. She logs into her
account and clicks on the I Have Not Received My Items button. If she has already been flagged

as having received a free order, she can’t get another one without speaking to customer service.
Otherwise, we will send her a free order and update the database to show that this customer has
already claimed for a lost item. We will then contact the courier to see if we can claim back the cost
of the lost order.

You will notice in the description that the business user is not focusing on the business process,
but rather the implementation concerns. The following sentence gives no value or insight into the
domain or business process:

She logs into her account and clicks on the I Have Not Received My Items button.

In the next sentence, the business user is already second-guessing how you will implement the
business policy. Some experts may have experience with databases and may go as far as suggesting
data schemas. Again, this gives the team no deep understanding of the domain:

If she has already been flagged as having received a free order, she can’t get another one without
speaking to customer service.

From this set of requirements, a team not interested in the domain may simply implement what it is
told and end up with a poor model that doesn’t reflect the concepts and policies of the domain. The
impact of this could be a misunderstanding of what “flagging the customer” means; it may mean
more than simply a tick in a database column and perhaps the catalyst for the start of a separate
business work flow. Without understanding the domain and the intent of a feature, the developers
won’t appreciate the repercussions of just implementing what they are told.

Teach Your Domain Experts to Focus on the Problem
and Not Jump to a Solution

Training and collaboration will help business people focus on the process rather than the
implementation and the problem space rather than the solution space. Next, the previous
requirements statement has been rewritten using the language of the domain. It focuses on the
business and its processes:

If you have not received an order, you can submit an undelivered order notification. If this is
your first claim, a replacement order is created. If you have made a claim before, your claim
case is opened and assigned to a customer service representative, who will investigate the claim.
In all cases, a lost mail compensation case is opened and sent to the courier with details of the
consignment that was undelivered.

In this description, you have discovered many important domain concepts that were missing before.
The rewritten prose introduces some terms into the UL, and the terminology of the domain has

Collaborating on a Ubiquitous Language | 51

been made crystal clear. In fact, the second description doesn’t even contain the customer concept;
instead, it focuses only on terms that are directly related to the process.

Remember: domain experts have no, or limited, understanding of technical terminology. Keep
examples focused on the business, and if domain experts are trying to help you by jumping to
implementation details, just gently remind them to focus on the what and the why of a system and
ask them to leave the how up to you.

Best Practices for Shaping the Language
The following best practices can help to shape your UL.

> Ensure that you have linguistic consistency. If you are using a term in code that the domain
expert doesn’t say, you need to check it with her. It could be that you have found a concept
that was required, so it needs to be added to the UL and understood by the domain expert.
Alternatively, maybe you misunderstood something that the domain expert said; therefore,
you should rectify the code with the correct term.

> Create a glossary of domain terms with the domain expert to avoid confusion and to help
make concepts explicit.

> Ensure that you use one word for a specific concept. Don’t let the domain expert or
developers have two words for something because this can lead to confusion, or there might
be two concepts with different contexts.

> Stay away from overloaded terms like policy, service, or manager. Be explicit even if it means
being wordy.

> Don’t use terms that have a specific meaning in software development, such as design pattern
names, because developers may assume its implementation rather than behavior.

> Naming is very important. Validate your code design by speaking to your business users about
classes. Would a business user understand “Query sent to the cache with, users matched using
regex to determine if they get discount”. Does your code and concepts make sense when you
say them aloud? If not ask your domain expert on how they would name concepts.

Name exceptions in terms of the UL.

Don’t use the name of a design pattern within your domain model. What does a decorator
mean to a business user? Would they understand the role of a factory? Perhaps your business
already has the concept of an adapter; the Gang of Four design pattern could confuse them.

> The UL should be visible everywhere, from namespaces to classes, and from properties to
method names. Use the language to drive the design of your code.

> As you gain a deeper understanding of the domain you are working in, your UL will evolve.
Refactor your code to embrace the evolution by using more intention-revealing method
names. If you find a grouping of complex logic starting to form, talk through what the code
is doing with your domain expert and see if you can define a domain concept for it. If you
find one, separate the logical grouping of code into a specification or policy class.

52 | CHAPTER4 MODEL-DRIVEN DESIGN

VALIDATING THE MODEL OUT LOUD

Linguistic consistency can validate the usefulness of a model. For example, listen to
conversations about the model, and focus on concepts in the design that don’t fit or
can’t easily satisfy business scenarios. Use the language of the domain to validate
solutions.

WHAT IS A SPECIFICATION?

A specification represents a business rule that needs to be satisfied by at least
part of the domain model. You can also use specifications for query criteria. For
example, you can query for all objects that satisfy a given specification.

HOW TO CREATE EFFECTIVE DOMAIN MODELS

Rich domain models are built to satisfy complex problems, the best way to create effective domain
models is to firstly focus on areas of the application that are important to the business. Ignore the
parts of a system that simply manage data and where most of the operations are CRUD based.
Instead look for the hard parts, the areas in the core domain that the business cares passionately
about and often the parts that are key to making or saving money.

MODELER'’S BLOCK?

Wake yourself up. Brainstorm in code by capturing business requirements as classes
and methods. Model on the whiteboard, on paper, with your colleagues, or even
with your partner. Warm up your brain by doing something—anything—and the
design will eventually bubble up in your consciousness. If that doesn’t work, try to
spark ideas by sitting in quiet contemplation. Either way, invest in your problem by
giving yourself time to think.

Don’t Let the Truth Get in the Way of a Good Model

A common misunderstanding is that a domain model should match reality; in fact, you should
not look to model real life at all but rather model useful abstractions within the problem
domain. Look for commonalities and variations within the problem domain. Understand
which are likely to change and are considered complex. Use this information to build your

How to Create Effective Domain Models | 53

model. It will be far more useful than identifying nouns and verbs based on the world of the
problem domain. Most importantly model only what is needed to meet the need of the business
case scenario.

A domain model is not a model of real life; it is a system of abstractions on reality, an interpretation
that only includes aspects of the problem domain that are prevalent to solving specific business

use cases. A domain model should exclude any irrelevant details of a domain that do not serve to
solve problems. The London Tube map shown in Figure 4-8 was designed to solve a problem. It
doesn’t reflect real life. It isn’t useful for calculating distances between landmarks in London, but

it is useful for traveling on the underground. It’s simple and effective within the context that it was
designed for.

Edgware Marylebone =
Road

Clased for 12 months
from June 2006
Bayswater

Cloged from July 2006
ek Octoder

Notting Lancaster pong
HillGate Gate gireet

> ~ Tottenh
Marble ottenham
Closed untitMay 2006 Arch Court Road
L High Street Hyde Park Green Park ®
Kensington Corner g [&] Leicester

Square

Knightsbridge Charing

Cross =

Gloucester
Road

Westminster

-
((<= 2= Waterloo

FIGURE 4-8: London Tube map bearing little resemblance to the distance between stations.

South
Kensington

Because it’s not concerned with modeling real life, the domain model cannot be deemed as being
wrong or right. Rather, it should be viewed as useful or not for the given problem it is being used
to solve.

Creating an effective domain model is fundamental to DDD. It is the artifact of knowledge
crunching and sharing, design insight, and breakthroughs. Having a useful model that is
rich in the UL is the key to meeting business objectives in the problem domain. Creating a

54 | CHAPTER4 MODEL-DRIVEN DESIGN

useful domain model is hard and takes lots of exploration, experimentation, collaboration,
and learning.

Model Only What Is Relevant

The domain model exists for one reason: to serve the application under development. Remember to
be selective when creating your domain models; you don’t have to include everything. Businesses are
big and complex with a lot going on. Trying to create that world within a single model would be at
best foolish and at worst extremely time consuming and rather pointless. Needless to say, it would
be a maintenance nightmare. If you are modeling a large system, break it down to more manageable
chunks by clearly sectioning off parts of the model.

Try not to model real relationships; instead, define associations (meaningful connections) in terms
of invariants and rules in the system. In real life, a customer has both a credit history and a contact
e-mail address, but how often would you come across a rule requiring you to have a good credit
history and an e-mail address starting with “A” to be able to purchase an item? Instead, group
behavior and data to satisfy the needs of the problem domain rather than what you think might
belong together. Remember that you are producing a model to fulfill the needs of a business use case
(or set of business use cases), not trying to model real life.

To keep your domain model relevant and focused, you should constantly challenge the model you
create against new scenarios and validate your understanding with domain experts. Remove any
behavior that is no longer relevant to avoid noise.

Domain Models Are Temporarily Useful

A domain model needs to be constantly refined to continually be useful. A domain model is only
ever temporarily useful for a given iteration and set of use cases. Future use cases or changes to
the business may render the model useless. The domain model represents an implementation of the
shared language that is applicable for only that moment in time. It is with this understanding that
developers should not be too attached to an elegant model. They need to be willing to rip up and
start again if the model becomes irrelevant.

Be Explicit with Terminology

Being able to communicate effectively is the most important skill for solving problems. A developer’s
purpose is not to code; it’s to solve problems. That’s why it’s vital to talk to the business you are
working for in a language without ambiguity or need of translation. By removing linguistic barriers,
domain experts and the development team are free to collaborate, explore, and experiment with
designs for a useful model. Technical implementations can then be expressed using the same UL,
and any design insights can then be fed back to domain experts for validation without need for
translation and loss of meaning.

Limit Your Abstractions

Introduce abstractions for commonality only, and even then try and avoid them. Abstractions come
at a cost. It is far better to be explicit than worry about not repeating yourself as trying to tie loosely
related concepts under a super class can cause problems with code maintenance.

How to Create Effective Domain Models | 55

An abstract class or an interface should represent an idea or a concept in your domain. It is really
important to limit abstractions in your code base and only create them for concepts in your domain
that have variations. Don’t seek to abstract every domain concern. If it’s not a variation of a concept
then keep it concrete and only abstract if, and when, you create a variation of it. Remember it

is always better to be explicit rather than hiding an important domain concept behind layers of
needless abstraction.

So when should you abstract? Take the example of traveling to work. The abstract concept would

be to commute whereas walking, taking the train, or driving is a variation of that concept; i.e., the
concrete implementation. If there were no variation in traveling to work (i.e., we all drove) we would
not need to introduce an abstract concept such as commuting.

Focus Your Code at the Right Level of Abstraction

An effective domain model should express the intent of the business use case by aiming code at the
right level of abstraction. Readers should be able to quickly grasp domain concepts without having
to drill down into the code to understand the implementation details.

Create abstractions at a high level; too many abstractions at a low level will cause a great amount of
friction when you need to refactor your model to handle a new scenario or when you have a design
breakthrough.

There is always a cost to introducing abstraction so we must be careful to apply it at the right level
and to areas of code that will benefit from it. At a low level we should avoid abstraction and instead
favor composition of behavior from explicit concrete objects. Abstraction creates a dependency
between classes and more dependencies equate to higher code coupling.

Abstract Behavior Not Implementations

You shouldn’t have an abstraction that is specific for a particular problem; abstractions
represent general concepts such as a IShippingNoteGenerator for an order processing
application. Variations of this concept could be domestic and international due to the
differences between paper work required. Don’t automatically abstract concepts that are
related. Continuing with the fulfillment domain, don’t try and create a common abstraction
for courier gateways; they don’t represent domain behavior, they are infrastructural concerns.
Instead keep these implementations concrete, explicit, and out of the domain model. When
we talk about domain concepts we are really talking about domain behavior. Create abstract
classes or interfaces based on behavior; keep them small and focused. Ask yourself how much
variation is there in domain behavior? Don’t force abstraction; use it only when it will help to
express concepts clearer in you model.

Just as design patterns emerge when you refactor code so will domain concepts. When they do and
you find variations of the concept then you can introduce abstractions in the form of interfaces

or abstract classes. Also be mindful of premature refactoring. If you don’t know the domain well
enough then you may not know the best way to refactor. Instead of painting yourself into a corner
let the code grow for a few iterations then look to see natural patterns appear around related
behavior. With this clarity you will be in a much better place to start to refactor and introduce
abstractions.

56 | CHAPTER4 MODEL-DRIVEN DESIGN

Look at all of the abstractions in your system. What do your interfaces and base classes tell you
about the domain of your application? They should reveal the major concepts in your system and
not just be abstractions of each implementation.

Implement the Model in Code Early and Often

It is vitally important to test your design in code against domain scenarios to ensure your white
board thinking can work as well as discovering any technical constraints that require an alteration
or compromises to the model. Technical implementations will reveal any problems with the design
and will help cement your understanding of a problem domain.

Don’t Stop at the First Good Idea

Only stop modelling when you have run out of ideas and not when you get the first good idea.
Once you have a useful model start again. Challenge yourself to create a model in a different
way, experiment with your thinking and design skills. Try to solve the problem with a completely
different model. If you don’t get it right the first time, refactor to a better solution. Constantly
refactor to your understanding of the problem domain to produce a more express model. Models
will change with more knowledge.

Remember a model is only useful for a moment in time; don’t get attached to elegant designs. Rip
up parts of your model that are no longer useful, and be willing to change when new use cases and
scenarios are thrown at your design.

WHEN TO APPLY MODEL-DRIVEN DESIGN

Simple problems don’t require complex solutions. You don’t need to create a UL for your entire
application. Focus your efforts with domain experts on the complex or important core domain. For
generic/supporting domains don’t waste your efforts, epically if there is no domain logic; doing so
will frustrate your busy domain experts and leave them reluctant to help out with the complex areas
of your application.

When you come across an area of complexity, you’re having trouble communicating with the
stakeholder, or your team is working in part of the domain that you don’t have much experience
with, this is the time to break out, model, and work on the UL.

Always challenge yourself and ask the questions, “Am I working within the core subdomain? Does
this problem require a rich domain? Does the business care about this area of the application? Will
it make a difference? Is it important to the business and do they have high expectations of it or do
they just want it to work?”

If It's Not Worth the Effort Don’t Try and Model It

If you have a particularly nasty and complex edge case that is in an area of the system that is
not core then you should think about making it a manual process. Not handling edge cases
and making them an explicit manual process instead can save valuable time and give you more

The Salient Points | 57

resources to work on the core domain. Humans and manual processes are great at edge cases
and can often make decisions based on data that would take a considerable amount of time
to replicate.

Focus on the Core Domain

The core domain of your application is why it is being built rather than bought. It is what your
stakeholders are most passionate about, and where you can have interesting conversations and
valuable knowledge-crunching sessions. This is the area where your UL gives you the most value,
and demands your focus. Try not to create a rich language for your entire domain because many
of your supporting and generic domains do not require one and are a waste of effort. Focus your
efforts on what gives you value. Try not to create a UL for everything. Areas and subdomains that
are not complex will not benefit from a UL, so don’t spread yourself too thin. A core domain is
small; focus on it. Creating a UL is costly.

THE SALIENT POINTS

>

The domain is the reality of the problem. The domain model is a set of abstractions based on
a projection of the domain designed to handle specific business use cases.

A model is represented as an analysis model and a code model. They are one and
the same.

A domain model exists as an analysis model and a code model. A Model-Driven Design binds
the analysis model and a code model through the use of the shared language.

An analysis model is only useful if it stays in synergy with the code model.

If you are shaping the analysis or code models, you have to be hands-on and contribute to
code. There is a place for architects, but they must be coders as well.

Code is the primary form of expression of the model and needs to be bound using the
ubiquitous language.

The process of developing a UL is the most important of Domain-Driven Design (DDD)
because it enables communication and learning.

Domain jargon must be explicitly defined to ensure accuracy in meaning because the
terminology used in communication is baked into the code implementation.

Implicit ideas in the domain that the team needs to understand are made explicit and given
names that form the shared ubiquitous language.

Domains are full of specialist terms and language that describe complex concepts in a clean,
concise manner.

Feature stories and scenarios can help you understand the behavior of a system, but a domain
expert will help you build a model that can support the specified behavior.

The ubiquitous language should be used in tests, namespaces, class names, and methods.

58 | CHAPTER4 MODEL-DRIVEN DESIGN

> It’s important to care about the conversation; a ubiquitous language is about collaboration
and not the development team just adopting the language of the business.

> Use domain scenarios to prove the usefulness of the model and to validate the team’s
understanding of the domain.

> Only apply Model-Driven Design and create a UL for a core domain that will make a
difference. Don’t apply these practices to the entire application.

Domain Model Implementation
Patterns

WHAT'S IN THIS CHAPTER?

> The role of the domain layer in an application
> Patterns to implement your domain model in code

> How to select the right design pattern to represent your model

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
domaindrivendesign on the Download Code tab. The code is in the Chapter 5 download
and individually named according to the names throughout the chapter.

The focus of DDD is to manage complexity. As you have read, this is achieved by placing a model
of the domain at the center of your software to fulfill the behaviors of your application. There are
various patterns at your disposal to represent the model in code form. In Chapter 3, “Focusing
on the Core Domain,” you were introduced to subdomains and the reality that more than one
model may exist in large applications. However, not all models will be of equal complexity or
importance. Some will contain complex domain logic, while others will simply be responsible

for the management of data, therefore it is wise to choose the most appropriate design pattern to
represent the model in code.

It is important to understand that there is no best practice when it comes to selecting a pattern
to represent your domain logic. As long as you isolate domain logic from technical concerns
you can implement Model-Driven Design and hence Domain-Driven Design.

This chapter presents the design patterns at your disposal when implementing a domain
model. Along with an explanation of each pattern, advice will be given on when it’s most
appropriate to use the pattern and when it is best to be avoided.

http://www.wrox.com/go/domaindrivendesign
http://www.wrox.com/go/domaindrivendesign

60 | CHAPTER5 DOMAIN MODEL IMPLEMENTATION PATTERNS

THE DOMAIN LAYER

The domain layer, at the heart of your application, is the area of code that contains your domain
model. It isolates the complexities of the domain model from the accidental technical complexities
of the application. It is responsible for ensuring that infrastructure concerns, such as managing
transactions and persisting state, don’t bleed into the business concerns and blur the rules that exist
in the domain. In most cases, the domain layer makes up only a small part of your application. The
rest is filled with infrastructure and presentation responsibilities, as you can see in Figure 5-1.

Web Interface Service API

| The User Interface Layer

Infrastructure

The Persistence
Layer

FIGURE 5-1: The code that represents the domain model makes up only a small portion of the overall
codebase.

DOMAIN MODEL IMPLEMENTATION PATTERNS

There are various patterns at your disposal to implement a domain model in code. Large systems are
not all built in the same way. Some parts are less important than others, and multiple models exist
to serve different contexts. Figure 5-2 shows multiple models coexisting in an application. This is
because different models are required for different contexts or different teams working on separate

Domain Model Implementation Patterns | 61

models. The boundaries around the model are explored in more detail in Chapter 6, “Maintaining
the Integrity of Domain Models with Bounded Contexts.” For now, understand that multiple
models can be at play, and you can implement those models in different manners. Figure 5-2 shows
an example of how a large application can be segmented into contexts with different patterns used
to represent the domain model. The rest of this chapter explores the design patterns that you can
follow when modeling a domain. The following three were first presented in the book Patterns of
Enterprise Application Architecture, by Martin Fowler.

> Domain model

> Transaction script
» Table module
T~ - The User Interface Layer
Inflastriicture e~ -
\ 4 =1l
The Application Layer
d
)l
The Domai

~

The Persisten

|

|| Transaction Script ||

Table Module

Bounded Context
A

Bounded Context
B

Bounded Context
C

FIGURE 5-2: Multiple domain models implemented in various patterns inside an application.

62 | CHAPTER5 DOMAIN MODEL IMPLEMENTATION PATTERNS

In addition to Fowler’s patterns, you will be introduced to the active record pattern, the anemic
domain model pattern, as well as functional patterns for implementing a model in code. Each of the
patterns presented in this chapter are useful depending on the complexities of each model in your
application.

Domain Model

The domain model pattern, catalogued in Martin Fowler’s Patterns of Enterprise Application
Architecture, is synonymous with DDD because it is a good fit for complex domains with rich
business logic. The domain model is an object-oriented model that incorporates both behavior
and data. At first glance, it may mirror the data persistence model (data schema if you are using
a relational database). Although both contain data, the domain model also incorporates business
process and associations, rules, and rich domain logic. DDD offers a number of building block
patterns, which are covered in Part III, which will enable you to implement Fowler’s domain
model pattern more effectively.

The domain model pattern is based on the premise that there is no database; therefore, it can
evolve and be created in a completely persistence-ignorant manner. When designing the model,
you don’t start with a data model; instead, you start with the code model—model-driven as
opposed to data-driven design. Only when you have to think about persisting the model can you
compromise on the design. Domain objects within the model are known as Plain Old C# Objects
(POCO). These classes are free from infrastructure concerns and are completely persistence
ignorant. Figure 5-3 shows how the domain model pattern and technical infrastructure are

kept separated.

Client

Application Service

Domain La

gstructure

Domain Model

iz

Data Store

FIGURE 5-3: The domain model pattern.

Domain Model Implementation Patterns | 63

This ability to focus only on the domain model enables the design of the domain logic to be driven
by the abstractions of the domain—hence, DDD. By not thinking about persistence needs, you can
build an expressive model purely focused on the domain problem at hand. Of course you will need
to persist it and may need to compromise, but you should not think about this when modelling. This
keeps the domain model free of infrastructural code and focused only on domain logic.

You can think of a domain model as a conceptual layer that represents the domain you are working
in. Things exist in this model and have relationships to other things. For example, if you were
building an e-commerce store, the “things” that would live in the model would represent a Basket,
Order, Order Item, and the like. These things have data and, more importantly, they have behavior.
Not only would an order have properties that represent a creation date, status, and order number,
but it would contain the business logic to apply a discount coupon, including all the domain rules
that surround it: Is the coupon valid? Can the coupon be used with the products in the basket? Are
there any other offers in place that would render the coupon invalid?

Figure 5-4 shows part of the domain model for an online auction site. The objects in the model
represent concepts of the problem domain that are used to fulfill the behaviors of an auction. As you
can see, the model aligns with the nouns of the auction domain but this is not always the case. In
fact you should focus on the verbs and actions of a problem domain when modeling as this will help
you concentrate on behavior rather than state, which could end up with your creating an object-
oriented representation of the data model.

-
Auction
Class

>

5 Properties
45 EndsAt
s HasEnded
o Id
45 Listingld
5 Methods
@, Auction (+ 1 overload)
@ CanPlaceBid
@ PlaceBidFor

x

44 WinningBid

#; Bids
HistoricalBid

Class
G

A)
Bid A
Class

2 Properties

Bidder

TimeOfOffer
E Methods

© Bid

£ MaximumBid

#; StartingPrice

>

("WinningBid
Class

E Properties

Auctionld

Bidder

4 TimeOfBid
E Methods

© CanBeExceededBy
DetermineWinningBidlncrem...
HasNotReachedMaximumBid
RaiseMaximumBidTo

®
®
@
© WasMadeBy
®

WinningBid (+ 1 overload)

A MaximumBid
N

-
Money A
Class

Y

Price
Class

>
I—

A CurrentAuctionPrice {

E Methods

@ BidIncrement
@ CanBeExceededBy
@, Price (+ 1 overload)

E Properties

4, Value
= Methods

© Add
IsGreaterThan
IsGreaterThanOrEqualTo
IsLessThanOrEqualTo
Money (+ 1 overload)

£ Amount

Q Q& Q&

ToString

FIGURE 5-4: The domain model of an auction site.

| CHAPTERS5 DOMAIN MODEL IMPLEMENTATION PATTERNS

In a domain model each object is responsible for a specific task. Objects work together to fulfill
business use cases by delegating to each other. In Listing 5-1 you can see how the Auction class
delegates to a WinningBid to determine the next price of the bid increment.

LISTING 5-1: An Auction Class from a Rich Domain Model

public class Auction

{

public void PlaceBidFor (Bid bid, DateTime currentTime)

{

if (StillInProgress (currentTime))
{
if (FirstOffer())
PlaceABidForTheFirst (bid) ;
else if (BidderIsIncreasingMaximumBid (bid))
WinningBid = WinningBid.RaiseMaximumBidTo (bid.MaximumBid) ;
else if (WinningBid.CanBeExceededBy (bid.MaximumBid))

{
}

Place (WinningBid.DetermineWinningBidIncrement (bid)) ;

}

The domain model excels when you have an involved, rich, complex business domain to model. It’s
a pure object-oriented approach that involves creating an abstract model of the real business domain
and is useful when dealing with complex logic and workflow. The domain model is persistence
ignorant and relies on mapper classes and other abstraction patterns to persist and retrieve business
entities. If you have to model complex logic or part of the problem domain that requires clarity
because it’s important, or will change often due to continued investment, it’s a good candidate for
the domain model pattern.

The domain model pattern is no silver bullet as it can be costly to implement. It’s the most
technically challenging and requires developers with a good grasp of object-oriented programming.
The majority of sub systems are CRUD based, with only the core domain requiring the domain
model implementation pattern to ensure clarity or to manage complex logic. What you should not
do is try to apply the domain model pattern for everything. Some parts of your application will
simply be forms over data and will require just basic validation instead of rich business logic. Trying
to model everything and apply object-oriented practices would be a waste of effort that would be
better spent on your core domain. Software development is all about making things simpler, so if
you have complex logic, apply the domain model pattern; otherwise, look for a pattern that fits the
problem you have, like the anemic domain model or the table module pattern.

If the portion of the application you are working on does not have frequently changing logic and is
merely a form of data, it is best not to try to apply the domain model pattern. At best, incorrectly

Domain Model Implementation Patterns | 65

using the domain model pattern can lead to a waste of effort; at worst, you introduce needless
complexity where a simpler implementation method would have sufficed.

Client

Transaction Script

Of all the domain logic patterns you will read
about in this chapter, transaction script is by far
the easiest to understand and get up and running
with. The transaction script pattern follows a
procedural style of development rather than

an object-oriented approach. Typically a single
procedure is created for each of your business
transactions, and it is grouped in some kind of
static manager or service class. Each procedure
contains all the business logic that is required
to complete the business transaction from the
workflow, business rules, and validation checks
to persistence in the database.

Application Se

Figure 5-5 shows a graphical representation of
the transaction script pattern.

Figure 5-6 shows the example signature of an
interface that is implementing the transaction
script pattern. The two implementations contain | GURE 5-5: The transaction script pattern.

all of the logic they require to handle the

business cases of creating an auction and bidding on an auction, respectively, including data access
and persistence logic, authorization, transactional concurrency, and consistency concerns.

ICommand A
Interface
B Methods

@ Execute

(P ICommand ? ICommand

CreateAuction A BidOnAuction A
Class Class
5 Methods & Methods

® Execute @ Execute

FIGURE 5-6: The transaction script pattern UML.

66

CHAPTER5 DOMAIN MODEL IMPLEMENTATION PATTERNS

One of the strengths of the transaction script pattern is that it’s simple to understand and can
be fast to get new team members up to speed without prior knowledge of the pattern. As new
requirements arise, it is easy to add more methods to the class without fear of impacting or breaking
existing functionality.

Continuing with the online auction domain, consider Listing 5-2. The transaction script represents
the use case of bidding on an auction.

LISTING 5-2: A Use Case Modeled Using The Transaction Script Pattern

public class BidOnAuction: ICommand

{
public BidOnAuction (Guid auctionId, Guid bidderId,
decimal amount, DateTime timeOfBid)
{

}

public void Execute ()

{

/7

using (TransactionScope scope = new TransactionScope ())

{

ThrowExceptionIfNotValid (auctionId, bidderId, amount, timeOfBid);
ThrowExceptionIfAuctionHasEnded (auctionId) ;

if (IsFirstBid(auctionId))
PlaceFirstBid (auctionId, bidderId, amount, timeOfBid) ;
else if (IsIncreasingMaximimBid(auctionId, amount, bidderId))
IncreaseMaximumBidTo (amount) ;
else if (CanMeetOrExceedBidIncrement (amount))
UpdatePrice (auctionId, bidderId, amount, timeOfBid);

}

As you can see, the entire business case is encapsulated within a single method. The class is dealing
with many responsibilities such as data retrieval and persistence, transaction management, as well
business logic to fulfill the place of a bid.

Transaction script is a simple procedural pattern that is useful for the parts of your domain that
have little or no logic. All logic for an operation is contained within a single service method. Any
developer can quickly come to grips with the architecture used to model domain logic. Therefore it
is a helpful pattern for teams with junior developers who are not comfortable with object-oriented
programming concepts. However, if logic becomes complex, the transaction script pattern can
quickly become hard to manage because, by its nature, duplication can occur quickly. If excessive
duplication occurs, refactor the code toward the domain model pattern.

Domain Model Implementation Patterns | 67

The problems with the transaction script pattern are revealed when an application grows and the
business logic complexities increase. As an application is extended, so is the mass of methods,
making for an unhelpful API full of fine-grained methods that overlap in terms of functionality.
You can use sub methods to avoid repetitive code such as the validation and business rules, but
duplication in the workflow cannot be avoided, and the code base can quickly become unwieldy and
unmanageable as the application grows.

Table Module

The table module pattern maps the object model to the database model. A single object represents a
table or view in the database. The object is responsible for all persistence needs along with business
logic behavior. The benefit of this pattern is that there is no mismatch between the object model
and the database model. The table module pattern is a great fit for Database-Driven Design, so on
first glance it might not be a good fit for DDD. However, for simpler parts of the domain that are
isolated by a bounded context and that are simply forms over data, this pattern is a good fit and
easier to come to grips with than the domain model pattern. If, however, the object model and
database model start to diverge, you need to refactor toward the domain model pattern.

Active Record

Active record is a variation of the table module pattern that maps objects to rows of a table as
opposed to having objects represent the tables themselves. An object represents a database row
(record) in a transient state or under modification.

The active record pattern is a popular pattern that is especially effective when your underlying database
model matches your business model. Typically, a business object exists for each table in your database.
The business object represents a single row in that table and contains data and behavior, as well as a
means to persist it, and methods to add new instances and find collections of objects.

In the active record pattern, each business object is responsible for its own persistence and related
business logic.

The active record pattern is great for simple applications that have one-to-one mapping between

the data model and the business model, such as with a blogging or a forum engine; it’s also a good
pattern to use if you have an existing database model or tend to build applications with a “data first”
approach. Because the business objects have a one-to-one mapping to the tables in the database

and all have the same create, read, update, and delete (CRUD) methods, it’s possible to use code
generation tools to auto-generate your business model for you. Good code generation tools also build
in all the database validation logic to ensure that you are allowing only valid data to be persisted.

Anemic Domain Model

The anemic domain model is sometimes referred to as an anti-pattern. At first glance, the pattern is
very similar to the domain model in that you will still find domain objects that represent the business
domain. Any behavior, however, is not contained within the domain objects. Instead, it is found
outside of the model, leaving domain objects as simple data transfer classes. The major disadvantage
of this pattern is that the domain services take on the role of a more procedural style of code rather
like the transaction script pattern that you saw at the beginning of the chapter, which brings along the

68

CHAPTER5 DOMAIN MODEL IMPLEMENTATION PATTERNS

issues associated with it. One such issue is the violation of the “Tell, Don’t Ask” principle, which states
that objects should tell the client what they can or can’t do rather than exposing properties and leaving
it up to the client to determine if an object is in a particular state for a given action to take place.
Domain objects are stripped of their logic and are simply data containers.

The anemic domain model pattern is a good candidate for parts of your domain model that have
little logic or for teams not very experienced with object-oriented programming techniques. The
anemic domain model can incorporate the UL and be a good first step when trying to create a rich
domain model.

Anemic Domain Model and Functional Programming

Domain-Driven Design is fully accessible to developers who prefer functional to object-oriented
programming. Domain models can easily be built using functional concepts like immutability and
referential transparency. Behavior-rich objects are not a necessity, nor is isolating state behind
behavioral interfaces. Accordingly, the anemic domain model pattern is actually a fundamentally
useful concept when using functional programming as opposed to being an anti-pattern.

It may seem contradictory that domain models are there to facilitate conversations with domain
experts, and yet the anemic domain model pattern precludes the ability to represent domain concepts
as objects. However, as many modern DDD practitioners assert, the most important domain concepts
are verbs—not the nouns like a bank account, but the verbs like transferring funds. With functional
programming and the anemic domain model, you still have the power to fully express domain verbs,
and consequently to have meaningful conversations with domain experts.

When building functional domain models, it is still possible to have structures that represent
domain concepts, even when using the anemic domain model pattern. Significantly, though, they are
just data structures with no behavior—so a behavior-rich, object-oriented BankAccount entity, as
shown in Listing 5-3.

LISTING 5-3: A Behavior-Rich, Object-Oriented BankAccount Entity
public class BankAccount
{

public Guid Id { get; private set; }

public Money Balance { get; private set; }

public Money OverdraftLimit { get; private set; }

public void Withdraw (Money amount)

{
}

public void Deposit (Money amount)

Domain Model Implementation Patterns | 69

}

public void IncreaseOverdraft (Money amount)

{

}
}

Would be modeled as a pure, immutable date structure, as in Listing 5-4:

LISTING 5-4: A Data Transfer BankAccount Object with No Behavior

public class BankAccount

{

public Guid Id { get; private set; }
public Money Balance { get; private set; }

public Money OverdraftLimit { get; private set; }

}

Having reduced objects into pure data structures, behavior then exists as pure functions, and the
challenge is to cohesively group and combine them aligned with the conceptual domain model. One
effective option is to group functions into aggregates. The other big divergence with your functions
is their structure and responsibility. Since functional programming necessitates immutability, your
functions need to return updated data structures rather than mutating the state of existing objects.

For example, an object-oriented ShoppingBasket may directly update its Items collection each time
the customer adds a product, as seen in Listing 5-5.

LISTING 5-5: An Object-Oriented ShoppingBasket Class

public class ShoppingBasket

{

public Guid Id { get; private set; }

// encapsulated mutable state
private List<BasketItem> Items { get; set; }

public void Add(BasketItem item)
{
if (this.Items.Contains(item))
throw new DuplicateItemSelected() ;
else
this.Items.Add(item); // mutating state

70

CHAPTER S5 DOMAIN MODEL IMPLEMENTATION PATTERNS

Taking the functional approach, instead of updating the Ttems collection, a copy of the ShoppingBasket
is returned that contains an updated, immutable Ttems collection, as seen in Listing 5-6.

LISTING 5-6: A Functional ShoppingBasket Class

// pure immutable data structure
public struct ShoppingBasket

{

public ShoppingBasket (Guid id, IImmutableList<BasketItem> items)

this.Id = id;
this.Items = items;

}

public Guid Id { get; private set; }

public ITmmutableList<BasketItem> Items { get; private set; }

}

// all functions for the Basket aggregate
public static class Basket

{

// pure function, does not belong to any object instance
public static ShoppingBasket AddItem(

BasketItem item, ShoppingBasket basket)
{

if (basket.Items.Contains(item))
throw new DuplicateItemSelected() ;

// adding creates a new immutable collection
IImmutablelList<BasketItem> items = basket.Items.Add(item) ;

// create a new immutable basket
return new ShoppingBasket (basket.Id, items);

}

Notice the Ttems collection can no longer be encapsulated since functions cannot access the
ShoppingBasket’s private state.

WARNING Be careful when creating copies of objects and collections. In some
languages, you may have a new object reference that points to the existing object
(aka a shallow copy). For instance, when copying the ShoppingBasket in the
object-oriented example, both the original and copy may point directly to the
same Tteus collection. So updating the copy, will actually update the original.
To easily solve this problem ensure you create and use only immutable data
structures and collections.

Most modern languages have native support for immutable collections. C# has
immutable equivalents of most mutable collections (https://msdn.microsoft .
com/en-us/library/dn385366%28v=vs.110%29.aspx) and Scala has both a
collections.mutable and collections.immutable module, for example.

https://msdn.microsoft.com/en%E2%80%90us/library/dn385366%28v=vs.110%29.aspx
https://msdn.microsoft.com/en%E2%80%90us/library/dn385366%28v=vs.110%29.aspx

The Salient Points | 71

NOTE Entities and aggregates are tactical building blocks used by DDD
practitioners to represent domain concepts like a bank account, shopping basket,
or online date. Part I1I of this book covers the DDD building blocks in-depth.

Some programming languages, including Haskell, Scala, and Clojure, make functional
programming a first-class feature. But it is still possible to build functional domain models in
traditionally object-oriented languages like C# and Java.

NOTE If you are unfamiliar with functional programming it is definitely
worth your time to at least learn the fundamental concepts. The Haskell wiki
(https ://www.haskell. org/haskellwiki/Functional_programming) is
widely regarded as an excellent beginner’s resource, even if you intend to use a
language other than Haskell.

THE SALIENT POINTS

>

The domain layer contains the model of the domain and is isolated from infrastructure and
presentation concerns.

The domain model can be implemented with multiple domain logic patterns.

There may be more than one model at play on a large project and therefore more than a
single pattern to represent domain logic.

As long as the pattern isolates code representing domain logic from technical code then it is a
good fit for DDD.

The domain model pattern is a good fit for a complex problem domain. Concepts in the
domain are encapsulated as objects containing both data and behavior.

The transaction script pattern organizes all domain logic to fulfill a business transaction or
use case in a procedural module.

The table module pattern represents your data model in object form. The Table Module is
useful for data-driven models that closely reflect the underlying data schema.

The active record pattern is like the table module pattern in that it is data-driven but
it represents rows in tables as opposed to the tables themselves. It’s a good fit for low
complexity logic but high CRUD-based models.

An anemic model is similar to the domain model pattern; however, the model is devoid of
any behavior. It is purely a model of the state of an object all behavior resides in service
classes that modify.

Functional programming is an equally valid approach to building domain models.

When using functional programming, behaviors can be grouped into aggregates (that
represent domain concepts) and applied to pure, immutable data structures (that also
represent domain concepts).

https://www.haskell.org/haskellwiki/Functional_programming

Maintaining the Integrity of
Domain Models with Bounded
Contexts

WHAT'S IN THIS CHAPTER?

The challenges of a single model
The importance of the bounded context
Carving out and defining boundaries of responsibility in code

Protecting the integrity of core parts of the domain

Y Y Y Y VY

Where to define boundaries

In large and complex applications you will find multiple models at play. Each model will be
built to represent a distinct area of the problem domain, with each implementation using an
appropriate code design pattern suitable for the complexity of the problem. Ideally you will
have a model for each subdomain; however, this might not always be the case as some complex
subdomains could contain more than a single model and some models could span two or

more subdomains. No matter how many models you have you will find that they will need to
interact to fulfill the behaviors of a system. It is when models are combined by teams without

a clear understanding of what context they apply to that they are prone to become blurred and
lose explicitness, as concepts and logic are intermingled.

Therefore it is vital to protect the integrity of each model and clearly define the boundaries of
their responsibility in code. This is achieved by binding a model to a specific context, known
as a bounded context. A bounded context is defined based on team’s language, and physical
artifacts. Bounded contexts enable a model to stay consistent and meaningful, which is vital
in managing complexity in the solution space. Diligent use of bounded contexts is essential to
being successful with Domain-Driven Design.

74 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

THE CHALLENGES OF A SINGLE MODEL

At the core of Domain-Driven Design is the need to create explicit, evolvable models in code

that align with the shared conceptual models. As new domain insights are gained, they can be
incorporated into the model efficiently. However, if a single model is used for an entire system,
concepts from one area of the model can be confused with similar-sounding concepts from another
area of the system—and even become coupled to them. Therefore, DDD advocates that you break
up a large complex system into multiple code models.

A Model Can Grow in Complexity

Large models accommodate many domain concepts and carry out many business use cases. As
a consequence, it is easy to make mistakes and group the wrong concepts together. It can also
be very difficult to find what you are looking for. The more the system grows, the more severe
these problems become, slowing down the speed at which new features and improvements can

be added.

As Figure 6-1 highlights, with each new use case and insight incorporated into the model, the
number of concepts and dependencies in the model grows, resulting in increased complexity.

Business Knowledge
Use Case Crunching

Business

Use Case%
Business

Use Case

Business

Domain model grows in
complexity over time to
satisfy the different
business use cases and
different contexts
of the business.

Knowledge
Crunching

Knowledge
Crunching

FIGURE 6-1: A model will grow in complexity.

Multiple Teams Working on a Single Model

Complex code is just one of the problems arising from a single model. Collaboration overhead and
organizational inefficiencies are also major problems a monolithic model is likely to cause.

The Challenges of a Single Model | 75

As one team wants to release a new feature, they have to check with other teams that their changes
can also be deployed. Either the first team will have to wait, or complex branching strategies will
be used. As Chapter 11, “Introduction to Bounded Context Integration,” explains in more detail,
complex branching strategies can be a big hindrance to an organization’s ability to frequently and
efficiently deliver business value and learn about their customers.

Continually requiring teams to collaborate on the design of new features or to plan releases is an
unnecessary inefficiency. As each team works with their own domain expert and tries to drive their
model in different directions, dragging other teams along with them is mutually wasteful. The
more teams, the more expensive the collaboration overhead, and the more complex the codebase, as
Figure 6-2 illustrates.

Development team

Development team Development team

In a single model, multiple teams will dilute
the explicitness.

FIGURE 6-2: Complexity in a model increases with multiple teams.

If multiple models are used instead, teams can iterate on their models and deliver new value
frequently and efficiently because they do not have to synchronize with other teams or concern
themselves with concepts from other teams’ models.

You may be concerned about a team’s duplicating code in each of their models. But focus on the
benefits that arise by removing dependencies between teams. Essentially, it is Ok to duplicate code
between models because the concepts are not the same.

Ambiguity in the Language of the Model

One of the epiphanies that DDD practitioners have is the realization that some concepts in a system
are very similar—they might even have the same name. Yet actually, they mean very different things
to different parts of the business. As Figure 6-3 illustrates, the “Ticket” concept means different
things to the Sales and Customer Service departments.

76

CHAPTER 6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

Ambiguity in
Terminology

Ticket Ticket

Severity, time raised,
category

Number of seats, dates,
show length, availability,
cost, location

Custodmer

Locatjon
0 @)
@) O O
Sales Context Development Team Customer Service
Context

The concept of a ticket is very different in each
of the contexts.

FIGURE 6-3: Domain terms mean different things in different contexts.

Once you accept that names can have different meanings in different contexts, it’s easier to accept
that multiple smaller models are more effective than a single large one. You can also have more
meaningful discussions with domain experts. For example, based on Figure 6-3, when talking to the
Sales manager about tickets, you know she cares about the cost and location of an event; whereas
discussion about tickets with the Customer Service manager will be focused on the severity and
category of problems raised by customers.

The Applicability of a Domain Concept

Sometimes, a single physical entity in the problem domain can mistakenly be classified as a single
concept in code. This is problematic when the physical entity actually represents multiple concepts,
that each mean different things in different contexts. The classic example is a product.

Figure 6-4 shows how products mean different things in different contexts. It is a concept that must be
acquired with a profitable margin and acceptable lead time to the Procurement team. Yet to the Sales

team a product is a concept with images, size guides, and belongs to a selling category—none of which
are relevant to the Procurement team, even though it is the same physical entity in the problem domain.

NOTE You learn in Part II how correlation [Ds are used to join up the lifecycle
of a physical entity that exists in multiple contexts (like the product example).

When a physical entity, such as a product, actually represents multiple domain concepts, it is often
modeled as a single concept by developers. Unfortunately, it’s very easy to fall into the trap of
thinking that because a product can be a physical item that it should be modeled as a single class in
code. This leads to coupling, as each model shares the same product class, as shown in Figure 6-5.

The Challenges of a Single Model | 77

Applicable in
Different Contexts

Product Product

Supplier, landed cost,

Images, size guide,
margin lead time

selling category

O O
O (0]
Procurement Development Team Sales Context
Context

The development teams create a concept in
code to meet all contexts. This will quickly
lead to a complex code base.

FIGURE 6-4: The same concept should be understood within different contexts.

E-commerce Application

Application Logic

i i Shipping
Promotion Allocation Loyalty)
Subdomain i Enb ol R

Business Objects/
Logic

FIGURE 6-5: A single view of an entity in the domain for all subdomains can quickly become a problem.

78 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

As discussed previously, when multiple contexts are coupled, code can become excessively complex
and the collaboration overhead between teams can become excessively costly. The shared class, in
this example product, also violates the Single Responsibility Principle (SRP), since there are four
contexts that all want it to change for completely different reasons.

When there are no boundaries in the code, it is too easy for coupling to occur, as with the product
shown in Figure 6-5. A better solution that reduces the coupling would be for each context—
Promotion, Allocation, Loyalty, and Shipping—to have its own model. Each model would then
contain a unique representation of a product that only satisfies the needs of the model’s context.
Figure 6-6 shows the multiple responsibilities of the shared product class, indicating which model
each of them should really belong in.

Fulfillment
Model

Inventory
Model

Pricing
Model

Public Class Product
{

public void Allocate () { . . . }
public Locations Stock () { . ..}

public Recommendations Similar () { . . . }
public Price PriceFor (CustomerType . .)
Public PurchaseOrder BuyFrom (Supplier . .)
bool CanShipTo (Country . . .)

Personalization
Model

Shipping
Model

Procurement
Model

FIGURE 6-6: The product, an implementation of the god object antipattern.

NOTE The product class in Figure 6-6 is a good example of the BBoM pattern
discussed earlier. A change to logic in one of the subdomains has an undesired
ripple effect to unrelated subdomains because of the interwoven code and the
lack of clearly defined boundaries of responsibility.

Integration with Legacy Code or Third Party Code

Another reason to prefer smaller models is that integrating with legacy code or third parties can be
less problematic. Adding new features to a monolithic codebase can be painful when there is lots of
legacy code. You want to add clean, new, insightful models that you created with domain experts,
but the limitations of legacy code can constrain the expressiveness of your design. But if you have
smaller models, not all of them will need to touch the legacy code.

Use Bounded Contexts to Divide and Conquer a Large Model | 79

A number of patterns, discussed in Chapter 11, show how it is easier to apply DDD to legacy systems
when you have multiple smaller models to work with.

Your Domain Model Is not Your Enterprise Model

Having a single model of the entire system is useful in some scenarios, including business information
(BI) and reporting. However, the enterprise model is not the best solution for creating an evolvable
domain model that explicitly expresses domain concepts. Nor is an enterprise model suitable for
iterative development processes that aim to deliver business value frequently delete repetition.

Figure 6-7 shows how you can have the best of both worlds—a unique model for each context and
an enterprise model for BI.

Behavior Data

Enterprise Model

Used for reporting
and a holistic joined
up view of an enterprise.

Models in Context

FIGURE 6-7: The difference between an enterprise model and a domain model.

NOTE Part II and III of this book show strategies, like publish-subscribe, that
can be used to transport data from bounded contexts to a data warehouse so
that you can create an enterprise model.

USE BOUNDED CONTEXTS TO DIVIDE AND
CONQUER A LARGE MODEL

A bounded context defines the applicability of a model. It gives clarity on what a model is used
for, where it should be consistent, and what it should ignore. A bounded context ensures that
domain concepts outside a model’s context do not distract from the problem it was designed to

80 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

solve. A bounded context makes it explicit to teams what the model is responsible for and what
it is not.

Context is an important term in Domain-Driven Design. Each model has a context implicitly
defined within a subdomain. When you talk about a product in the context of the fulfillment
subdomain, you don’t need to call it a product that can be fulfilled; likewise, when talking in the
context of shopping, it’s not a saleable product. It’s simply a product in a defined context.

When communicating with domain experts or other members of the development team, you should
ensure that everyone is aware of the context you are talking in. The context defines the scope

of the model, limiting the boundaries of the problem space, enabling the team to focus without
distractions.

In Chapter 4, “Model-Driven Design,” you are introduced to the concept of the ubiquitous language
(UL) and the importance of models defined in a context that are free from linguistic ambiguity. The
context refers to the specific responsibility of the model, which helps to decompose and organize

the problem space. A bounded context takes the idea of a model in context further by encapsulating
it within a boundary of responsibility. This boundary is a concrete technical implementation, as
opposed to the context that is more abstract. The bounded context enforces communication in such
a manner as to not lessen the purity of the model.

A bounded context is first and foremost a linguistic boundary. When talking with domain experts,
if you feel a sentence requires a context, this is a big hint that you need to isolate that model within
a bounded context.

BOUNDED CONTEXTS = BORDER CONTROL

Treat bounded contexts like the borders of a country. Nothing should pass into
the bounded context unless it goes through the border control and is valid. Just
like countries where people speak a different language, so does the code within
your bounded context. Be on your guard in case people try to bypass your borders
and don’t adhere to your rules and language. One of the most important parts of
DDD is the protection of boundaries. A model is defined in a context. This should
be followed through to the implementation in the code; otherwise, you will find
yourself in a BBoM. Figure 6-8 continues the example of an ambiguous product
concept; you see the concept of a product existing without an explicitly defined
context. It has been distorted to satisfy the needs of many different scenarios.
Without enforcing a boundary around the model and defining it within a specific
context, you end up with a mass of sprawling code.

Figure 6-9 shows how a product can be a smaller more focused concept when applied to a
specific context. It is important when developing the application that you isolate models within
bounded contexts to avoid the blurring of responsibilities that can lead to code that resembles a
BBoM.

Use Bounded Contexts to Divide and Conquer a Large Model | 81

Domain Model

- -~ < -
- ~

- B ~a
/ Sates \

e N
/ Marketin \
(arketing) | _/Context '/
N Context y S
~ - _ -
e GRN Product 7 Fulfillment "~
i
/~ Procurement \ / Context .
‘. Context R

S—-— > ~

//. . =~
+ Pricing
/ \
i Inkentory ", " Context,
\ 7 T
/v A _7

Subdomains B

e N\

FIGURE 6-8: Putting terms into context and identifying
multiple models.

e ~N
- ~ 7 Sales Context™
, LN / \
,” Marketing '\
/ Context \

|
I [N
I I \
\ I
\ /
AN /
N IT— \

Domain Concepts | \

e ~ in Context ‘\ h
J/ Procurement\\ \ /
/ Context R 7
RS e
]

7 N
// Fulfillment
/ Context

Ve L. N

s Pricing "\
/ Context \\
I

\
I
I\ /
/ o\ /
\ /
N ~
S—=

FIGURE 6-9: Define each model within its own context.

Domain Model

CODE ORGANIZATION IS WHAT MATTERS

As a developer, your focus should be on organizing code so that you can manage
solutions for complex problem domains. Bounded contexts help to organize code at
a macro level—a skill that you should rank high in importance.

82 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

Defining a Model’s Boundary

The need for bounded contexts is clear in larger systems, but the process of identifying bounded
contexts and their boundaries is challenging. Fortunately, it’s not an up-front decision you have to
get perfectly correct. As you learn more about the domain, you can adjust the boundaries of your
bounded contexts.

There are two aspects of a problem domain that you can use as a guide to identifying bounded
contexts—terminology and business capabilities. As you’ve seen previously in this chapter, the same
term can have different semantics in different contexts. If you can delineate a domain model based
on a change in the meaning of a word or phrase, you will very likely have identified the boundary
of a bounded context. Business capabilities are often easy to discern but can be misleading. For
example, if a business has a Sales department and a Customer Service department, there is very
likely to be a sales and customer bounded context. But that’s not always true, so it’s important not
to blindly model business capabilities.

Outside of the problem domain, team structure and location can also be a big influence on context
boundaries, as can integrating with legacy or third-party systems.

Size, though, is not a guideline for delineating bounded contexts. No absolute or relative value can
tell you how many classes or lines of code you need. A bounded context’s size is dependent mostly on
aspects of the problem domain. Some bounded contexts may, therefore, be large while others are small.
To summarize, context boundaries can be influenced by the following:
> Ambiguity in terminology and concepts of the domain
> Alignment to subdomains and business capabilities
» Team organization and physical location
> Legacy code base
>

Third party integration

NOTE In Part II, you see practical examples of how individual bounded
contexts can be broken down into smaller modules or components while
retaining a faithful representation of the domain.

Define Boundaries around Language

It’s important to be explicit about what context you’re using when talking with domain experts,
because terminology can have different meanings in different contexts. As repeated throughout this
chapter, multiple models will be at play in your domain. You need to enforce linguistic boundaries
to protect the validity of a domain term. Therefore, linguistic boundaries are bounded context
boundaries. If the concept of a product has multiple meanings inside the same model, then the
model should be split into at least two bounded contexts, each having a single definition of the
product concept. This was discussed previously and illustrated in Figure 6-9. Equally, the same term
can refer to multiple concepts, as was the case with the ticket example illustrated in Figure 6-3. That
is also an example of a linguistic boundary that should be the boundary of a bounded context.

Use Bounded Contexts to Divide and Conquer a Large Model | 83

Align to Business Capabilities

An organization is an ecosystem of interdependent services, each with its own vocabulary. Hence
business capabilities are often strong indicators of linguistic boundaries. As mentioned previously,
a Sales department and Customer Service department can have completely different definitions

of a ticket concept. Accordingly, you should look to business capabilities as potential context
boundaries.

NOTE Part 1I shows how Service Oriented Architecture (SOA) can be used to
create services that are aligned with business capabilities.

Be careful when using business capabilities to delineate bounded contexts. Sometimes business
capabilities do not align perfectly with the problem domain. You can end up with a system
that mirrors an organization’s communication structure, but does not faithfully represent the
domain. Conway’s Law even implies that a system will inevitably reflect an organization’s
communication structure:

“Any organization that designs a system (defined more broadly here than just
information systems) will inevitably produce a design whose structure is a copy
of the organization’s communication structure.”

You can use Conway’s Law as a guide in two ways. Firstly, you can be cognizant of Conway’s

Law so that you don’t just model the organization’s structure. Alternatively, you can remodel your
organization based on the desired architecture of your system. Either approach is going to require a
big effort, so it’s not a decision you should take without careful planning.

NOTE What actually is a business capability? A business capability is a
grouping of people in an organization that collaborate on business processes
made up of lower-level capabilities. Consider a fulfilment business capability; it
may be compromised of a manger(s) who manages staff working in a warehouse.
The warehouse staff will carry out low-level processes like packing and
dispatching goods, thereby contributing to the business processes of fulfilling

an order.

Create Contexts around Teams

A single team should be responsible for a bounded context, whether that crosses one or many
applications or departments. So structure teams around bounded contexts; form product and
services groups rather than trying to mirror the departmental structure of the business. Ensure
that teams are responsible for a bounded context from presentation through domain logic and to
persistence.

84 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

AMAZON'S PIZZA TEAMS

Amazon has a policy of ensuring no development team is so big that it cannot be fed by
two pizzas (http://highscalability.com/amazon-architecture). It is important
to keep teams small and focused and make them responsible for a bounded context

or a set of bounded contexts. As highlighted by the context map, not all bounded
contexts work in isolation. Furthermore, just as there are patterns to communicate in
code between bounded contexts, so too are there patterns for team collaboration.

The main rationale for aligning teams with bounded contexts is that independence allows teams

to both move faster and make better decisions. Teams can move faster if they are in full control of
product and technical decisions. They can also iterate much more rapidly if they don’t have to worry
about affecting other teams.

A single team can stay focused on its business priorities; therefore, when a decision needs to be made or
someone has a suggestion, everyone can quickly huddle together and decide on the best way forward.
Conversely, different teams might have different business priorities and arrangements that affect their
ability to work together efficiently. For example, one team might have to wait until the other team
becomes available before they can schedule a meeting and start making decisions or iterating on concepts.

Remember, communication between teams is sometimes a good thing, so don’t completely avoid it;
just limit it to when it’s useful. One example of useful cross-team communication is knowledge and
skill sharing.

Try to Retain Some Communication between Teams

Although having completely independent teams is a productivity win, it’s important to ensure that
communication between teams still occurs for knowledge and skill-sharing benefits. Ultimately,
bounded contexts combine at run time to carry out full use cases, so teams need a big-picture
understanding of how their bounded context(s) fit into the wider system. Established patterns for this
problem involve having regular sessions in which teams share with other development teams what they
are working on, how they have implemented it, or any technologies that have helped them achieve their
goals. Another excellent pattern is cross-team pair programming. This involves moving a developer

to a different team for a few days to learn about that part of the domain. You can spawn many novel
approaches based on these two concepts of having group sessions and moving people around.

Making an effort to ensure that teams communicate efficiently really pays off when breaking
changes need to occur. And in every system, you do always get them. At some point, the

contract between bounded contexts needs to change to meet the needs of the business. Having teams
communicate to work out the best overall solution can sometimes be the most efficient option.

NOTE Backwards compatibility is also an effective approach that avoids the
need for breaking changes (and thus cross-team coordination). You learn about
backwards-compatible versioning in Part 11, including messaging and REST-
based examples.

http://highscalability.com/amazon%E2%80%90architecture%00%00

Implementing Bounded Contexts | 85

Diagrams and lightweight documentation help teams share knowledge quickly, especially when
new members join. You’ll see how context maps and other types of diagrams facilitate knowledge
sharing in Chapter 7, “Context Mapping.”

Context Game

To demonstrate the importance of modeling in context and to reveal multiple models within the
domain, you can employ another facilitating game. The Context Game, pioneered by Greg Young
(http://codebetter.com/gregyoung/2012/02/29/the-context-game-2/), helps to make it clear
where an additional model is required to map the problem space effectively.

You can introduce the game into knowledge-crunching sessions when you think you have an
overloaded or ambiguous term. Split the group into smaller groups of developers and business
experts. You should split the business experts by department or business responsibility. Give them
20 minutes to come up with a definition of what the term or concept means to them in their part of
the business, using the developers to capture the knowledge. Then bring the whole team together to
present their views on the concept.

You will find that different parts of the business have different views on the shared terminology.
Where the business functions have a difference of opinion is where you need to draw your context
lines and create a new model. This was shown in Figure 6-8 with the product concept existing in
many different contexts.

The Difference between a Subdomain and a Bounded Context

Subdomains, introduced in Chapter 3, “Focusing on the Core Domain,” represent the logical areas
of a problem domain, typically reflecting the business capabilities of the business organizational
structure. They are used to distinguish the areas of importance in an application, the core domain,
from the less important areas, the supporting and generic domains. Subdomains exist to distill the
problem space and break down complexity.

Domain models are built to fulfill the uses cases of each of the subdomains. Ideally there

would be a one-to-one mapping between models and subdomains, but this is not always the

case. Models are defined based on team structure, ambiguity in language, business process
alignment, or physical deployment. Therefore a subdomain could contain more than a single
model and a model could span more than a single subdomain. This is often the case within legacy
environments.

Models need to be isolated and defined within an explicit context in order to stay pure and focused.
As you’ve learned, this context is known as the bounded context. Unlike a subdomain, a bounded
context is a concrete technical implementation that enforces boundaries between models within an
application. Bounded contexts exist in the solution space and are represented as explicit domain
models in a context.

IMPLEMENTING BOUNDED CONTEXTS

A bounded context owns the vertical slice of functionality from the presentation layer, through the
domain logic layer, on to the persistence, and even to the data storage.

http://codebetter.com/gregyoung/2012/02/29/the%E2%80%90context%E2%80%90game%E2%80%902/%00%00

86 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

Applying the concept of bounded contexts to the system shown previously in Figure 6-5 results in a
system with each bounded context looking after its own presentation, domain logic, and persistence
responsibilities, as shown in Figure 6-10. In this improved architecture, the concept of a product can
exist in each bounded context and only contain attributes and logic prevalent to that context alone.
Changes in any bounded context no longer have undesired effects on others because the subdomains
are now isolated.

E-commerce Application

Shipping
Subdomain

Loyalty
Subdomain

Allocation
Subdomain

Promotion
Subdomain

Pricing Bounded

Context Loyalty Bounded Promotion Allocation
Context Bounded Bounded
Presentation Context Context

Domain Logic

Domain Logic Presentation

Domain Logid

Persistence

Persistence

Domain Logid

Persistence

Booking Bounded
Context

Presentation

Domain Logic

Persistence

Database

Database Database

Database

FIGURE 6-10: A layered architecture pattern per bounded context and not per application.

A closer inspection, as shown in Figure 6-11, shows the product concept existing in two models but
defined by the context that it is within.

Not all bounded contexts need to share the same architectural pattern. If a bounded context contains a
supporting or generic domain with a low logic complexity, you might want to favor a more create, read,
update, and delete (CRUD) style of development. If, however, the domain logic is sufficiently complex,
it’s best to create a rich object-oriented model of the domain. Once bounded contexts are separated you
can go a step further and apply different architectural patterns, as shown in Figure 6-12.

Figure 6-12 shows how you can use different architectural patterns within each bounded context of
an application. The various bounded contexts are pulled together using a composite Ul to display to
the user. Figure 6-13 shows that the bounded context encapsulates the infrastructure, data store and
user interface as well as the domain model.

Implementing Bounded Contexts | 87

E-commerce Application

Shipping
Subdomain Loyalty. Promotion Allocation
Subdomain Subdomain Subdomain
Loyalty Bounded Promotion
Context Bounded

Domain Logic

Persistence

Context

Persistence
v

namespace Promotion

“namespace Loyalty

Public Class Product
{

Public Points Earns () {} Public Class Product

Public void Includeln (offer. . .

FIGURE 6-11: The Product class in different contexts.

WHAT IS CRUD?

CRUD is an acronym for create, read, update, and delete. It often describes a system
with little logic that is merely formed over a data model. To many developers,
CRUD is a four-letter word (okay, it really is), and they think a simple solution is
beneath them. Don’t be frightened of applying a CRUD-style architecture to an
application. If you are dealing with a bounded context that contains no logic, don’t
add lots of layers of abstraction. Remember to KISS (keep it simple, stupid).

WHAT IS CQRS?

CQRS stands for Command Query Responsibility Segregation. It is an
architectural pattern that separates the querying from command processing by
providing two models instead of one. One model is built to handle and process
commands, the other is built for presentation needs. Chapter 24, “CQRS: An
Architecture of a Bounded Context,” goes into more detail on the pattern.

88 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

E- Applicati
commerce Application 1 x Hat @ $20.00

e — —— 1 x Scarf @ $10.00
Composite Ul
Shipping @ $2.99

Place order
I) Promotion
Shipping Subdomain Subdomain Shipping
Subdomain Sales)
Basket Bounded -) Subdomain
Context romotion)
Bounded Pricing Bounded Ordering

Boundin
Context 9
CRUD ontex 1 (CEhiEs: Context
Layered Layered
DDD DDD

_I

Database Database

il
e

Database

FIGURE 6-12: You can apply different architectural patterns to the different bounded
contexts.

WHAT IS A COMPOSITE UI?

A composite Ul is a user interface made up of loosely coupled components. A
composite Ul shows data from multiple bounded contexts on the same web page.
This can be done with multiple Ajax calls, for example. In order to protect a
model’s integrity, a bounded context can employ application services to expose
coarse grained methods that encapsulate the details of the underlying domain
model, as shown in Figure 6-12. This endpoint can take the input of a different
model and transform it into a language that the model inside understands.

This protects the integrity of the model and helps to prevent blurred lines of
responsibility between models.

NOTE Application Services are covered in more detail in Chapter 25,
“Commands: Application Service Patterns for Processing Business Use Cases.”

The Salient Points | 89

4 N . Bounded Context
4 W Defines the boundary of
9 | applicability e N
| N
! Other Bounded Contexts d i N
: ‘ L ser Interface N
7/ N
N . y’ yr AN
~___." / Application Servise Y

Protects the integrity of the
domain model by exposing an
API

Domain Model

Keeps the model pure

FIGURE 6-13: The anatomy of a bounded context.

Fundamentally, autonomy is a key characteristic of bounded contexts that isolates teams from
external distractions, and isolates models from unrelated concepts. In Part IT you will see practical
examples of implementing and integrating autonomous bounded contexts using scalable integration
approaches, including event-driven architecture with messaging and REST.

THE SALIENT POINTS

> Trying to use a single model for a complex problem domain will often cause code to result in
a Big Ball of Mud.

> A monolithic model increases collaboration overhead amongst teams and reduces their
efficiency at delivering business value.

> For each model at play within an application, you must explicitly define its context and
communicate it to other teams.

> A bounded context is a linguistic boundary. It isolates models to remove ambiguity
within UL.

A bounded context protects the integrity of the domain model.

> Identifying and creating bounded contexts is one of the most important aspects of Domain-
Driven Design.

90 | CHAPTER6 MAINTAINING THE INTEGRITY OF DOMAIN MODELS WITH BOUNDED CONTEXTS

> There are no rules for defining the boundaries of a model and therefore bounded contexts.
Instead you should base bounded contexts around linguistic boundaries, team organization,
subdomains and physical deployments.

> Subdomains are used in the problem space to partition the problem domain. Bounded
contexts are used to define the applicability of a model in the solution space.

> A single team should own a bounded context.

> Architectural patterns apply at the bounded context level, not at the application level. If you
don’t have complex logic in a bounded context, use a simple create, read, update, and delete
(CRUD) architecture.

> Speak a ubiquitous language within an explicitly bounded context.

> A bounded context should be autonomous—owning the entire code stack from presentation
through domain logic and onto the database and schema.

Context Mapping

WHAT'S IN THIS CHAPTER?

> Why the context map is vital for strategic design
> Understanding model relationships between bounded contexts

> The organizational relationship patterns between teams and
contexts

> Effective ways to communicate a context map

In large and complex applications, multiple models in context collaborate to fulfill the
requirements and behaviors of a system. A single team may not own all of the various sub
components of a system, some will be existing legacy code that is the responsibility of a
different team, and other components will be provided by third parties that will have no
knowledge of the clients that will consume its functionality. Teams that don’t have a good
understanding of the different contexts within a system, and their relationships to one another,
run the risk of compromising the models at play when integrating bounded contexts. Lines
between models can become blurred resulting in a Big Ball of Mud if teams don’t explicitly
map and understand relationships between contexts.

The technical details of contexts within systems are not the only force that can hamper the success
of a project. Organizational relationships between the teams that are responsible for contexts can
also have a big impact on the outcome of a project. Often, teams that manage other contexts are
not motivated by the same forces, or they have different priorities. For projects to succeed, teams
usually need to manage changes in these situations at a political rather than technical level.

Other nontechnical challenges can appear during development. These are issues that arise
from the areas of the problem domain that sit between bounded contexts that have not been
explicitly defined. These important business processes can often be devoid of responsibility
from development teams and business ownership, but paradoxically are immensely important
to business workflows and processes.

92

CHAPTER 7 CONTEXT MAPPING

To combat these challenges, teams can create context maps to capture the technical and
organizational relationships between various bounded contexts. The greatest strength of a context
map is that it is used to capture the reality of the landscape, warts and all, as opposed to an outdated
high-level design document. The context map, ever evolving, ensures that teams are informed of

the holistic view of the system, both technical and organizational, enabling them to have the best
possible chance of overcoming issues early and to avoid accidentally weakening the usefulness of the
models by violating their integrity.

A REALITY MAP

A context map, as shown in Figure 7-1, is an important artifact; its responsibility is to ensure

that boundaries between various contexts of the system are defined explicitly and that each team
understands the contact points between them. A context map is not a highly detailed document
created in some kind of enterprise architecture tool, it is a high-level, hand drawn diagram that
communicates a holistic picture of the contexts in play. A context map should be simple enough
to be understood by domain experts and development teams alike. As well as clearly labelling the
contexts the teams understand, the diagram should also show areas of the system that are not well
understood to reflect the messy and often unintelligible reality of the codebase.

A model in context

Legacy mess resembling a
Big Ball of Mud

Contact points
between contexts

Context B

FIGURE 7-1: A context map.

The Technical Reality

The technical details of the map, as shown in Figure 7-2, demonstrate the integration points
between contexts. This heat map is vital for teams to understand the technical implications of their
changes. It shows the boundaries that exist and any translations that are used to retain the integrity
of bounded contexts.

A Reality Map | 93

Payroll has a reliance on the finance
context, which is managed by a
different team. The payroll context
isolates itself from the more complex
finance model

Payroll
Context

Finance
Context

NQ contexts

The third-party context
exposes an interface through
a RESTful service

Recruitment
Context
(Third-Party)

FIGURE 7-2: The technical integration on a context map.

It is extremely important that context maps reflect reality, showing the code in the present state
rather than an ideal future state. Context maps need not show the detail of a model; instead, they
must demonstrate the integration points and the flow of data between bounded contexts. Like the
code model and analysis model, the context map should change only when code changes so it does
not give a false impression of the landscape. The map should show the stark reality; only then will it
be useful.

The Organizational Reality

Changes to business processes or the creation of new work flows can often span many bounded
contexts and reach across various parts of the domain. Coordinating change on this scale often
requires as much management of teams as it does technical change. It is vital to understand who
is responsible for each context that is required to change and how this change will take place. If
the process of coordination and prioritization of changes is not understood, it can be a massive
stumbling block and stifle development as teams wait on others to act on requests for change.
Showing the direction of team relationships is one of the strengths a context map has over
traditional UML or architectural diagrams. Having this knowledge at the start of a project is
essential to resolving nontechnical challenges before they block progress.

94 | CHAPTER7 CONTEXT MAPPING

Figure 7-3 shows the direction of relationships between bounded contexts. Teams that are not on
the same project might find release schedules and development priorities need to be aligned if a
change is required to a bounded context outside their ownership. Technical change can be fairly
straightforward, but if the political situation is not understood, changes to other contexts may be
delayed or not implemented at all.

The payroll context is influenced
by the finance context and has to
change when it does

Payroll
Context

Finance
Context

HR Context

The HR context integrates
to the third-party context
and conforms to its model
to avoid the cost of
translation

Recruitment
Context
(Third-Party)

FIGURE 7-3: The organizational relationships on a context map.

Mapping a Relevant Reality

When creating a context map, try to focus on your immediate problem area; you need to understand
the landscape that will affect the success of your project and not the entire enterprise. A focus only
on the contexts that you will be directly integrating with helps you get going with context mapping
and prevents you from losing focus.

X Marks the Spot of the Core Domain

When mapping out the contexts and identifying the models in play, it is a good idea to work
with your domain experts and label the core domain. Marking the core domain on the map and
discovering the relationships between it and other contexts can provide insight into its clarity in
context to the enterprise landscape.

Recognising the Relationships between Bounded Contexts | 95

RECOGNISING THE RELATIONSHIPS BETWEEN BOUNDED
CONTEXTS

Models in context work together in large applications to provide system behavior. It is important
to understand the relationships between the contexts to have a clear understanding as to the lay of
the land. The following patterns describe common relationships between bounded contexts. Note
that these patterns show how the models relate to each other and how teams relate. They are no
technical integration patterns on communicating across contexts. Part I of the book covers the
technicalities of how to integrate bounded contexts.

Anticorruption Layer

If you are creating a model for a sub system that communicates with other sub systems as part of a
larger system you may need to interface with models created by different teams. Other models, even
though created for the same domain, can be expressed with a different ubiquitous language and
modelled in a completely different manner to your own. If you are not careful integrating with these
models, adapting to their interfaces can lead to a corruption of your model.

In order to avoid corruption and protect your model from external influences you can create
an isolation layer that contains an interface written in terms of your model. The interface
adapts and translates to the interface of the other context. This isolation layer is known as an
anticorruption layer.

As shown in Figure 7-4, you can use an anticorruption layer to wrap communication with legacy or
third-party code to protect the integrity of a bounded context. An anticorruption layer manages the
transformation of one context’s model to another.

Contains only translation
logic, not business logic

Order
Management
Context

Anticorruption Layer

FIGURE 7-4: Use an anticorruption layer to integrate with code you don’t own or can’t change.

96

CHAPTER7 CONTEXT MAPPING

The anticorruption layer’s translation map works in a similar manner to the adapter pattern in that
it transforms the API of another context into an API that you can work against. Chapter 11 gives an
example of the transformation that occurs between bounded contexts using the anticorruption layer.

You won’t always be working on greenfield developments, so you will often need to integrate with
third-party or legacy contexts. Because you can’t change the API of the contexts you don’t own or
those that can’t be changed easily, it’s important not to compromise the integrity of your bounded
context to match the API of another.

If you have a system that resembles a BBoM and you need to introduce additional functionality
it is tempting to simply add code to it and in turn add to the mess; alternatively you can request
to rewrite the entire system at the same time as adding the new feature. Neither of these two
options is practical as it can be time consuming and risky to rewrite a large application, and
simply adding to the mess can increase the maintenance nightmare. A more pragmatic option

is to lean on the anticorruption layer, which can be used to isolate the new context from the
existing code mess. Using an anticorruption layer in this context is a great refactoring practice
because you are able to create clear boundaries without needing to update the mess of code that
lives within a context.

Shared Kernel

If two teams are working closely in the same application, on two separate bounded contexts that
have a lot of crossover in terms of domain concepts and logic, the overhead of keeping the teams
isolated and using translation maps to translate from one context to another can be too much. In
this instance, it may be better to collaborate and to share part of the model to ease integration. This
shared model is known as a shared kernel. The pattern is of particular use if you have two bounded
contexts in the same subdomain that share a subset of domain logic.

Figure 7-5 shows part of an ERP system that contains a payroll context and an HR context that
shares the employee model.

Payroll
Context

The employee model is
common to both contexts
and so it is shared

FIGURE 7-5: Integration with a shared kernel.

Recognising the Relationships between Bounded Contexts | 97

Because there is a shared code dependency, a shared kernel can be more risky due to the tighter
coupling that leads to one team being able to break another team’s system. It’s important that
everyone on both teams understands this and that a continuous integrated test system verifies the
behavior of both models when the common model is modified.

Open Host Service

Other systems or components that communicate with you will employ some type of transformation
layer in order to translate your model into terms of their own, similar to the anticorruption layer.
If multiple consumers share the same transformation logic it can be more useful to provide a set of
services that exposes the functionality of a context via a clearly defined, explicit contract known as
an open host service.

Consider the example in Figure 7-6. The order management system provides information about
customer orders to the commerce system, procurement system, and the CRM system. Each system
is required to translate the complicated order management system’s order model for use within
their own system. To avoid this duplication of efforts the order management system can expose a
simplified version of a sales order using a published language via an open host service, as shown
in Figure 7-7.

Each consuming model translates
the order management model

Procurement

FIGURE 7-6: Multiple subsystems integrating with similar transformation efforts.

98

CHAPTER7 CONTEXT MAPPING

Service Layer
grce

No translation is
required at the
consumer

Procurement

A public APl is exposed via a
contract with a simplified model
whose language is published for
all to understand

FIGURE 7-7: Integration with an open host service.

Separate Ways

If the cost of integration between contexts is too great due to technical complexities or political ones,
a decision can be made to not integrate contexts at all and simply have teams implement separately
from one another. Integration can instead be achieved via user interfaces or manual processes. For
example, it may be useful for a customer service application that manages contacts with customers
to also show users the orders a customer has outstanding when dealing with a query. However, if
the effort of integration between an order management system is too great it may be more practical
to simply include a menu link that enables the Order Management system to be opened in a separate
screen, thus giving users the information they need without the complexities of fully integrating
albeit for a small de-scope in feature request.

Partnership

If two teams are responsible for different contexts but are working toward a common goal a
partnership can be formed to ensure that cooperation on integration between the two contexts can
be made. Cooperation can cover the technical interfaces so that they accommodate both teams’
interests. From a political standpoint releases can be aligned between the teams so that necessary
interfaces and contact points are released at a time that they are required. If teams are using a
shared kernel between two bounded contexts it is recommended that they do so as a partnership.

An Upstream/Downstream Relationship

The relationships between bounded contexts can be defined in terms of a direction; one end will
be upstream and the other downstream. If you are the downstream end of the relationship you are

Recognising the Relationships between Bounded Contexts | 99

dependent on data or behavior of the upstream end. The upstream end will influence the
downstream context. For instance, if an upstream interface changes so must the consuming

side downstream. Likewise the release plan of the upstream part of the relationship will influence
the downstream context as it may be dependent on a particular API method. The following patterns
show how the upstream and downstream relationships can be classified.

Customer-Supplier

In situations where teams are not working toward a common goal to avoid the upstream team
making all the decisions and potentially compromising the downstream team to the detriment
of the project as a whole, a more collaborative customer-supplier relationship can be formed.

In this pattern, the teams work together to create an agreed-upon interface that satisfies both
from a technical and scheduling standpoint. The customer part of the relationship is the
downstream context. The customer will join the supplier’s (upstream context) planning meeting
to ensure its needs are understood and that it can have visibility when upstream changes are
occurring.

Due to the increased collaboration of the customer/supplier relationship, decisions can take longer.
Teams need to have meetings or online discussions to progress. With careful planning, it might be
possible to make agreements in advance so that no team is blocked waiting for the other to make a
decision or deploy its new system with the updated interface. On the other hand, for remote teams,
teams in different time zones, or teams with busy schedules, the collaboration overhead could cause
lengthy delays.

The customer-supplier relationship emphasizes that the customer team’s bounded context relies on
the supplier team’s bounded context, but not vice versa. Sometimes there is no opportunity to form
a collaborative relationship with an upstream context and so the downstream context must conform
to the upstream context’s integration points.

For example, consider Figure 7-8; the commerce context requires more information on a sales order
than is currently supplied from the order management context. The team that is responsible for the
commerce context can act as a customer during the order management context team’s planning
sessions to ensure their needs are understood and accounted for.

Upstrea

Customer-
Supplier

Context

Order
Management
Context

FIGURE 7-8: A customer-supplier relationship between bounded contexts.

100

| CHAPTER7 CONTEXT MAPPING

Conformist

If an upstream context is not able to collaborate then the downstream context will need to conform
to the upstream context when integrating. The most common occurrence of the conformist
relationship is integrating with external suppliers. It’s almost certain that a payment provider will
not change its API for you and give you extra information unless you are an influential client,
which would make you upstream of them. Instead, if you are downstream and are unable to

form a customer-supplier relationship and it is too costly to create an anticorruption layer you
should conform to the model of the provider to simplify integration. The most obvious downside

to the conformist relationship is that the downstream team, which works to the requirements of
the upstream team, may have to sacrifice clarity of its domain model because it must align to the
model of the upstream context even though it may be conceptually different than your own view.
Alternatively, an anticorruption layer can be used to retain the integrity so that changes to a contact
point don’t affect the underlying model.

COMMUNICATING THE CONTEXT MAP

When drawing up your context maps, you can add the type of organizational relationship that
exists as well as the type of technical integration between two bounded contexts on the line that
joins them. You can also indicate which side of the line is upstream and which is downstream
using letters or symbols, if applicable. Figure 7-9 shows an example of a context map with these
features.

Commerce
Context

Downstream
Customer-

Supplier

Customer
Model

Upstream Partnership

Shared
Kernel

Management
Context

Payment
Gateway
Context

Upstrieam

FIGURE 7-9: A context map showing the types of integration between bounded contexts.

The Strategic Importance of Context Maps | 101

THE STRATEGIC IMPORTANCE OF CONTEXT MAPS

In many ways, the communication between bounded contexts, both technical and organizational,
is more important for teams starting out on a project than the bounded contexts themselves.
Information that context maps provide can enable teams to make important strategic decisions
that improve the success of a project. A context map is a powerful artifact that can bring new team
members up to speed quickly and provide an early warning for potential trouble hot spots. Context
maps can also reveal issues with communication and work flows within the business.

Retaining Integrity

All development teams in the organization need to understand the context map. Teams don’t need
to understand the inner workings of each bounded context; instead, they need to be aware of those
other contexts—the application programming interface (API) they expose, the relationships they
have, and, most importantly, the conceptual models they are responsible for. With this information,
teams can prevent blurring the lines of responsibility and ensure that all contexts retain their
integrity.

Retaining integrity is important to keep your codebase focused on a single model. This enables
the code to become supple because any change affects only a single bounded context and doesn’t
have a rippling effect across multiple areas of your domain. It’s this suppleness that enables you
to alter code and to adapt quickly and confidently when the business needs a change to process
or logic.

The Basis for a Plan of Attack

A context map highlights areas of confusion and mess, and, more importantly, where the core
domain is. Teams can use this information to identify areas they need to clear up first to improve the
success of a project:

> Areas that are too far gone and where the effort to improve is far greater than the payback
can be isolated and left.

> Areas of no strategic advantage or that are of low complexity need not incur the cost of
creating a ubiquitous language or follow the model-driven development methodology.

> Areas that are core to the success of the project or are complex are candidates for the tactical
side of Domain-Driven Design, and should be kept isolated from poorly designed bounded
contexts to retain integrity.

Understanding Ownership and Responsibility

Accountability and responsibility are other nontechnical areas that can affect a project. Defining
team ownership and management for subsystems that you need to integrate with is essential for
ensuring changes are made on time and in line with what you expect. Context mapping is about
investigation and clarification; you may not be able to draw a clear context map straight away,
but the process of clarifying responsibility, explicitly defining blurred lines, and understanding
communication flow while mapping contexts is as important as the finished artifact.

102 | CHAPTER7 CONTEXT MAPPING

Revealing Areas of Confusion in Business Work Flow

The business processes that happen between and take advantage of bounded contexts are often left
in no-man’s-land without clear responsibility and clarity regarding their boundaries and integration
methods. A context map, focusing on the nontechnical aspects of the relationships, can reveal
broken business process flow and communication between systems and business capabilities that
have degraded over time. This revelation is often more useful to the businesses that are able to better
understand and improve process that spans across departments and capabilities. The insight can be
used to reduce risk of project failure by tackling ambiguity early and asking powerful questions that
help the success of the project.

The often gray area between contexts that govern business process is also void of
accountability when changes are being made, and is only discovered later on in a project’s life
cycle.

Identifying Nontechnical Obstacles

Context maps reveal the departmental boundaries involved in a project. If your team does not
own all the contexts in play, coordination with other teams and other lines of management and
prioritization needs to take place. Understanding these obstacles up front gives you a much greater
probability of success on a project and enables you to tackle nontechnical problems such as release
scheduling before they become blockers.

In a similar manner, changes that require integration with third-party contexts can expose
requirements on testing environments and coordination with outside teams or at least access to
sandbox accounts and documentation.

Encourages Good Communication

When a diagram shows you that a relationship exists between your bounded context and another
bounded context, you should have a pretty good idea that you need to be communicating with
the team responsible for it. When the diagram also indicates that you are the upstream team, you
understand that your responsibility is usually to lead decision making, and accordingly, you may
often need to initiate communication.

Helps On-Board New Starters

Have you ever started working for a new company and not understood how your system fits into
the system as a whole? Have you ever felt uneasy about answering questions from domain experts
because they came to you with problems that also touched on parts of the system you barely knew
existed? Having a concise, yet informative, context map that the whole team regularly views and
keeps up to date is a fantastic way to ensure all team members understand the bigger picture—or at
least have an idea of which parts of the system they don’t know enough about. If a domain expert
approaches you with a problem that you’re unfamiliar with, you can turn to the context map for
suggestions about who it would be best to talk to.

The Strategic Importance of Context Maps | 103

THE SALIENT POINTS

>

A context map reflects the way things are right now. It provides a holistic view of the
technical integration methods and relationships between bounded contexts. Without them,
models can be compromised, and bounded contexts can quickly change to balls of mud as
integration blurs the lines of a model’s applicability.

An anticorruption layer provides isolation for a model when interfacing with another
context. The layer ensures integrity is not compromised by providing translation from one
context to another.

Integration using the shared kernel pattern is for contexts that have an overlap and shared a
common model.

Integration via an open host service exposes an external API instead of requiring clients to
transform from one model to another. Typically, this creates a published language for clients
to work with.

Relationships between bounded contexts can be understood in terms of being upstream or
downstream of one another. Upstream context have influence over downstream contexts.

Collaboration between two teams not working to a common goal or not on the same project
is known as a customer-supplier relationship. Downstream customers can collaborate with
their upstream suppliers to integrate contexts.

The conformist pattern describes the relationship between an upstream and downstream
team where the upstream team will not collaborate with the downstream team. This is often
the case when the upstream team is a third-party.

The partnership relationship pattern describes two teams that have a common goal and a
usually on the same project but working on two different contexts.

Separate ways should be followed if bounded contexts are too costly to integrate and other
nontechnical methods can be found.

Application Architecture

WHAT'S IN THIS CHAPTER?

> Application architecture patterns that protect the integrity of your
domain model

> The difference between application and bounded context
architectures

> The role and responsibilities of application services

> How to support various application clients

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
domaindrivendesign on the Download Code tab. The code is in the Chapter 8 download and
individually named according to the names throughout the chapter.

Domain-Driven Design (DDD) focuses on managing the challenges of building applications
with complex domain logic by isolating the business complexities from the technical concerns.
Up until now, this book has only looked at techniques to enable teams to model a useful
conceptual abstraction of the problem domain. This chapter, however, looks at patterns

that enable the domain model to be utilized in the context of an application, taking into
consideration persistence, presentation, and other technical requirements.

APPLICATION ARCHITECTURE

Developing software while following the principles of DDD does not require you to use any
particular application architecture style. But one thing that your architecture must support is
the isolation of your domain logic.

http://www.wrox.com/go/domaindrivendesign
http://www.wrox.com/go/domaindrivendesign

106 | CHAPTER8 APPLICATION ARCHITECTURE

Separating the Concerns of Your Application

To avoid turning your codebase into a Big Ball of Mud (BBoM) and thus weakening the integrity
and ultimately the usefulness of a domain model, it is vital that the structure of an application
supports the separation of technical complexities from the complexities of the domain. Presentation,
persistence, and domain logic concerns of an application will change at different rates and for
different reasons; an architecture that separates these concerns can accommodate change without
causing an undesired effect to unrelated areas of the codebase.

Abstraction from the Complexities of the Domain

In addition to a separation of concerns, an application architecture must abstract away from the
intricacies of a complex domain by exposing a coarse-grained set of use cases that encapsulate
and hide the low-level domain details. Abstracting at a higher level prevents changes in domain
logic from affecting the presentation layer and vice versa because the clients of the application
communicate through application services acting as use cases rather than directly with domain
objects.

A Layered Architecture

To support the separation of concerns, you can layer the different responsibilities of an
application, as shown in Figure 8-1. Fowler catalogued the ubiquitous layered architecture in his
book Patterns of Enterprise Application

Architecture. However, many other

architectures support the separation of Web Services

concerns by dividing an application into
areas that change together, such as Uncle
Bob’s Clean Architecture, the Hexagonal
Architecture (also known as the Ports and
Adapters Architecture), and the Onion
Architecture.

Presentation

Unlike typical views of a layered architecture,
Figure 8-1 shows that at the heart of the
architecture is the domain layer containing
all the logic pertaining to the business.
Surrounding the domain layer is an
application layer that abstracts the low-level
details of the domain behind a coarse-grained
application programming interface (API)
representing the business use cases of the
application. The domain logic and application
layers are isolated and protected from

the accidental complexities of any clients,
frameworks, and infrastructural concerns. FIGURE 8-1: A layered architecture.

Application Architecture | 107

Dependency Inversion

To enforce a separation of concerns, the domain layer and application layers at the center of the
architecture should not depend on any other layers. All dependencies face inward, in that the
domain layer, at the heart of the application, is dependent on nothing else, enabling it to focus
distraction-free on domain concerns. The application layer is dependent only on the domain layer; it
orchestrates the handling of the use cases by delegating to the domain layer.

Of course, the state of domain objects needs to be saved to some kind of persistence store. To
achieve this without coupling the domain layer to technical code, the application layer defines an
interface that enables domain objects to be hydrated and persisted. This interface is written from
the perspective of the application layer and in a language and style it understands free from specific
frameworks or technical jargon. The infrastructural layers then implement and adapt to these
interfaces, thus giving the dependency that the lower layers need without coupling. Transaction
management along with cross-cutting concerns such as security and logging are provided in the
same manner. Figure 8-2 shows the direction of dependencies and the direction of interfaces that
describe the relationship between the application layer and technical layers.

Web Services

Application service layer

Dependencies defines interfaces

point inward with the
domain layer not dependent
on anything

Application Service

Layer

Infrastructure

FIGURE 8-2: Dependency inversion within a layered architecture.

The Domain Layer

As discussed in Chapter 4, “Model-Driven Design,” a domain model represents a conceptual
abstract view of the problem domain created to fulfill the needs of the business use cases. The
domain layer containing the abstract model does not depend on anything else and is agnostic to the
technicalities of the clients it serves and data stores that persist the domain objects.

108

| CHAPTER8 APPLICATION ARCHITECTURE

The Application Service Layer

The application service layer represents the use cases and behavior of the application. Use cases are
implemented as application services that contain application logic to coordinate the fulfillment of
a use case by delegating to the domain and infrastructural layers. Application services operate at a
higher level of abstraction than the domain objects, exposing a coarse-grained set of services while
hiding the details of the domain layer—what the system does, but not how it does it. By hiding the
complexities of the domain behind a fagade, you can evolve the domain model while ensuring that
changes do not affect clients.

The client of the domain layer is the application service layer; however, to perform its work, it
requires dependencies on external layers. These dependencies are inverted because the application
layer exposes the contracts to the interfaces it requires. The external resources must then adapt to
the interfaces to ensure the application layer is not tightly coupled to a specific technology.

Coordinating the retrieval of domain objects from a data store, delegating work to them, and then
saving the updated state is the responsibility of the application service layer. Application service
layers are also responsible for coordinating notifications to other systems when significant events
occur within the domain. All these interfaces with external resources are defined within the
application service layer but are implemented in the infrastructural layer.

The application service layer enables the support of disparate clients without compromising the
domain layer’s integrity. New clients must adapt to the input defined by the application’s contract—
its APL. They must also transform the output of the application service into a format that is suitable
for them. In this way, the application layer can be thought of as an anticorruption layer, ensuring
that the domain layer stays pure and unaffected by external technical details.

The Infrastructural Layers

The infrastructural layers of an application are the technical details that enable it to function.
Whereas the application and domain layers are focused on modeling behavior and business logic,
respectively, the infrastructural layers are concerned with purely technical capabilities, such as
enabling the application to be consumed, whether by humans via a user interface or by applications
via a set of web service or message endpoints. The infrastructural layers are also responsible for the
technical implementation of storing information on the state of domain objects.

In addition, the infrastructural layer can provide capabilities for logging, security, notification,
and integration with other bounded contexts and applications. These are all external details—
technical concerns that should not directly affect the use case exposed and the domain logic of an
application.

Communication Across Layers

When communicating across layers, to prevent exposing the details of the domain model to the
outside world, you don’t pass domain objects across boundaries. For the same reasons, you don’t
send raw unsolicited data or user input straight into the domain layer. Instead, you use simple data
transfer objects (DTOs), presentation models, and application event objects to communicate changes
or actions in the domain.

Application Architecture | 109

Infrasthucture

Business use case message
defined by the application
layer

The application layer maps
domain information to an
application view in order to
not expose domain details

FIGURE 8-3: Domain objects are hidden from clients of the application.

To avoid tight coupling of layers, higher layers must communicate with lower layers by adapting to
their message types. This again keeps the lower layers isolated and loosely coupled to any external
layers. Figure 8-3 shows the communication across the layers and how data is transformed to
protect the integrity of the domain model.

Testing in Isolation

Separating the different concerns in your application and ensuring your domain logic is not
dependent on any technically focused code such as presentation or data persistence frameworks
enables you to test domain and application logic in isolation, independent of any infrastructural
frameworks.

As shown in Figure 8-4, you can use unit tests to confirm the logic within the domain layer. You can
use mocks and stubs to give the application layer the fake implementations it requires to confirm the
correctness of business task coordination with the domain layer and external resources.

Don’t Share Data Schema between Bounded Contexts

In addition to separating the concerns within the codebase of an application, an architecture
must include the separation of the persistence of the domain object state from other applications’
data requirements. Figure 8-5 shows applications integrated via a shared database and shared
schema.

110 | CHAPTER8 APPLICATION ARCHITECTURE

Presentation

For the infrastructure layer
favor integration and
end-to-end testing

The application service
layer and the domain layer
can be tested with unit
tests and mocks/stubs for
external resoources

FIGURE 8-4: Testing layers in isolation.

Applications Sharing the
same Data Schema

FIGURE 8-5: Bounded contexts integrating via a shared data schema.

Application Architecture | 111

Bounded contexts can share the same Ideally a bounded context should have its
database, but data schemas should be own database
separate

FIGURE 8-6: Bounded contexts with their own data schema.

Although this is an easy integration method, it can complicate and blur the lines of a model by
acting as the catalyst to your codebase growing into a BBoM. Sharing data makes it easy for client
code to bypass the protection of a bounded context and interact with a domain object state without
the protection of domain logic. It is also easy to interpret logic and schema incorrectly, resulting in
changes to the state that invalidate invariants.

As shown in Figure 8-6, you should favor application or bounded context databases over integration
databases. Just as you apply context boundaries within the domain model, you must do the same for
the persistence model. This helps to force clients to integrate through the well-defined application
service layer, protecting the integrity of your model and ensuring invariants are met.

Application Architectures versus Architectures for
Bounded Contexts

Applications can be composed of more than one bounded context. Architectures apply to bounded
contexts and applications in different ways. An application that is composed of two or more
bounded contexts may have an architectural style for the user interfaces and different architectures
for each of the bounded contexts. Figure 8-7 shows an application composed of three bounded
contexts; here the presentation layer contains its own application layer to facilitate the coordination
with the bounded contexts.

However, some people believe that the boundary of a bounded context should extend to the
presentation layer. Udi Dahan’s business component gives the bounded context the responsibility for
owning specific regions of the user interface. This architecture can be seen in Figure 8-8.

112

| CHAPTER8 APPLICATION ARCHITECTURE

- The User Interface Layer

Infrastrycture RN

The Application Layer

A

The Persistence

Bounded Context Bounded Context Bounded Context
A B C

FIGURE 8-7: Bounded contexts integrating via a separate application layer.

In this architecture style, the infrastructure takes care of ensuring communication and the sharing
of correlation IDs.

There does not need to be consistency in architectural styles or data stores across bounded contexts, but
within a single bounded context, you should strive to follow one method of representing domain logic.

APPLICATION SERVICES

The application service layer, cataloged as the service layer in Fowler’s Patterns of Enterprise
Application Architecture book, can be used to define the boundary of your domain model and can
also be thought of as the implementation of the bounded context concept, isolating and protecting
the integrity of your domain model.

As mentioned earlier in this chapter the responsibility of the application service layer is to expose the
capabilities and operations available to the application while abstracting the low-level complexities

Application Services | 113

of the domain model. Capabilities are defined by the business use cases that the system must satisfy.
The application services fulfill the use cases by coordinating the execution of domain logic. They deal
with technical concerns such as handling input and shaping reporting information on the state of the
domain, as well as transactional, logging, and persistence concerns.

A

The User Interfacg|Layer

Infrastrugcture

The Appglication
ayer

The Domain Lgyer

Domain Model Transaction

- /Paﬁem/'

The Persistenke Layer

Bounded Context Bounded Context = Bounded Context
A B C

FIGURE 8-8: Presentation layer composed of bounded contexts.

Application services contain application logic only. This logic covers security, transaction
management, and communication with other technical capabilities such as e-mail and web services.
They are the clients of the domain layer and delegate all work to that layer. No domain logic should
be found within the application services; instead, the application services should be procedural

in style and thin. The application layer is not dependent on any frameworks or technology that
consumes the application service, such as Ul or service frameworks. It does, however, define
interfaces that it depends on to hydrate domain objects and manage nondomain tasks.

114 | CHAPTER8 APPLICATION ARCHITECTURE

Application Logic versus Domain Logic

Application logic contains the workflow steps required to fulfill a business use case. Steps can include
the hydrating of domain objects from a database, the mapping of user input to objects that the domain
layer understands, and ultimately the delegating to domain objects or a collection of them to make a
business decision. Other steps may include delegating to infrastructural services, such as notifying other
systems of changes in domain state via messaging systems or web calls, authorization, and logging.

Application logic is all about coordination and orchestration through delegation to domain and
infrastructural services. The application services don’t do any work, but they understand who to talk
to to complete the task. Domain logic, on the other hand, is focused only on domain rules, concepts,
information, and work flows. Domain logic is free from technical details, including persistence.

As an example, consider Figure 8-9, which models the use case of applying a promotion coupon to

an e-commerce basket. The ASP.NET MVC framework presentation layer transforms the Hypertext
Transport Protocol (HTTP) request into a form that the application service layer expects and calls

the service method. The application service delegates to the persistence layer to retrieve the coupon
object. It then checks whether the coupon is still valid. If it is not, it responds with an appropriate
result. If it is valid, it again delegates to the persistence layer to retrieve the basket and passes the
basket to the coupon to generate a discount. The changes to the discount on the basket domain object
are persisted, and an event is published to notify that the coupon was redeemed.

Presentation

Example of application service Infrasthycture

task:

Application Service

J Validate input from the

resentation layer.
p Yy Layer

o Retrieve domain objects
from the data store.

o Delegate decisions and
business actions to the
domain object.

J Notify other systems
of significant events
via The messaging

éssaging
system.

FIGURE 8-9: Application logic versus domain logic.

Defining and Exposing Capabilities

Because the application services are exposing capabilities of the system, they should not have to adapt
to new clients. Instead, new clients, such as presentation layers, should adapt to the contracts exposed
by the services. In other words, the capabilities of the system should not change for clients. Rather,

Application Services | 115

they should change only when the business use case changes. The use cases exposed by the application
services change at a different rate and for different reasons than the domain logic that is used to fulfill
them. This enables clients consuming the services to be protected from frequent changes to domain logic.

Take, for example, the business use case of risk assessing an order for fraud. The system exposes
the capability to take details of an order and return a score based on domain logic. Over time, the
domain logic may change, but the application service that is the implementation of the use case to
score an order for risk will largely remain constant, changing only to alter its contract to provide
additional information.

The stakeholders may not know the complexities of the domain layer; however, the business tasks
that the application layer is responsible for are meaningful to the business. Even if they are not
domain experts, the stakeholders should understand them.

Business Use Case Coordination

Whereas the domain model is object-oriented in its nature, the application services are procedural, as
they are focused on task orchestration as opposed to modeling domain logic and concepts. Application
services are somewhat similar to ASP.NET MVC controller actions. Controller actions contain logic
to control the user interface interactions in the same manner that application services contain logic
that represents business tasks or use cases that coordinate communication with services and objects
within the domain layer. Both controller actions and application services are stateless and procedural
in nature. An exception is that both controller actions and application services can store state, but the
state should only be to store the status of the customer journey or the progress of the business task.

Application services also share more coordination logic with controller actions in the form of
transforming and mapping input and output. Controller actions map HTTP post variables to objects
that application services require and map application services query responses to view models for
presentation needs. Application services, in the same way, map requests into structures that domain
objects understand, and respond with presentation models that hide the real form of the domain objects
and that are specific to user interface views.

Application Services Represent Use Cases, Not Create, Read,
Update, and Delete

Behavior-Driven Design (BDD) helps you understand the behaviors of an application. With the
behaviors you capture using BDD, you can use the language expressed in the BDD specifications as the
name for you application services use/cases. This is similar to the way you use the ubiquitous language
(UL) of the domain within the code of the domain layer. Application services are not simply create, read,
update, and delete (CRUD) methods; they should reveal user intent and communicate the capabilities

of a system. Examples of this can be seen in Chapter 25, “Commands: Application Service Patterns for
Processing Business Use Cases,” along with patterns on how to implement the application service layer.

Domain Layer As an Implementation Detail

Application services are powerful and can be helpful for any application complexity, be it a core
subdomain with rich logic or a generic subdomain that is merely a fagade for access to the data

116 | CHAPTER8 APPLICATION ARCHITECTURE

store. Having the application services decouple clients from the logic enables the domain layer to
evolve cleanly without having a ripple effect across layers.

Your application service methods can reveal whether a domain model is required at all. If you find
that all your business use cases are simply updating, adding, or deleting data, then it’s a good bet that
the domain is lacking any real logic and can be kept simple by employing a transaction script or
data wrapper pattern, as discussed in Chapter 2, “Distilling the Problem Domain,” instead of a
full-blown rich domain model. However, if the application services and behaviors of your system are
rich in language, this may suggest the need for a domain model pattern in your domain logic layer.

Domain Reporting

Besides coordinating business tasks, the application service layer needs to provide information on
the state of domain objects in the form of reports. You don’t want to expose the inner workings of
your domain model to the outside world, so the application services transform domain objects into
presentation models that give specific views of domain state without revealing the structure of the
domain model. You can see this transformation in Figure 8-10.

View model requires data
Domain Model from multiple aggregates

a View Model

Database

N 7A§g_rég’ate C

FIGURE 8-10: A view model mapping to many domain objects.

Read Models versus Transactional Models

Sometimes a user interface requires information that spans across many domain objects. It would be
inefficient and costly for the application service to hydrate all the rich domain objects to simply provide
a subset of information for a view. In these cases, it is preferable for the application service layer to
provide a specific view of domain state directly from the data source, as shown in Figure 8-11. This way,
you can construct views in an efficient manner without having to construct large object graphs of the
domain objects and expose details within them.

There is, however, a drawback to providing read and write capabilities from the same
conceptual model, albeit the data model. The transactional model stores logic in domain
objects and simple state in the data store. To support both reporting and transactional needs,
the views might require extra information that will affect the structure of domain objects.
To prevent the model from having to change because of presentation needs, you can store the
view data separately in a data schema that is best suited to querying. To achieve this, you can

Application Clients | 117

store changes that occur within the domain model and use these as the basis for reporting
requirements.

View model maps to
database view

View Model

View Model

Database

View Model

@& &

A separate view model for
each Ul screen

FIGURE 8-11: View models queried directly from the data source.

Figure 8-12 shows how the transactional model handles a write request from a client and then raises
events that are stored for querying. You can store these events and their data in the same database
or a completely different storage mechanism. This pattern is called Command Query Responsibility
Segregation (CQRS) and is covered in greater detail in Chapter 24, “CQRS: An Architecture of a
Bounded Context.” Further patterns for reporting on a domain model are presented in Chapter 26,
“Queries: Domain Reporting.”

APPLICATION CLIENTS

The role of the clients of the application service layer is to expose the capabilities of the system.
Many applications have some form of presentation or user interface that will give users access to the
system behaviors. Other applications instead expose their functionality via RESTful or web services.
Regardless of the type of client application, a service should be ignorant to what consumes its
functionality. Application services should not bend to meet the needs of a client but instead should
expose use cases of an application and force a client to adapt to its API.

It is entirely possible to build a system without an application service layer, relying on the clients
to perform all the tasks that the application service layer is responsible for. However, by creating
a specific set of services, you are modeling use cases explicitly and keeping them separate from

118

| CHAPTERS8 APPLICATION ARCHITECTURE

presentation requirements. These application services help to focus on the behaviors of the systems
and enable you to separate domain logic from the other concerns of your application.

Figure 8-13 shows how multiple clients can consume the behaviors of an application via the
application service layer. Also shown is how the application service layer can itself consume external
contexts and third party services.

Perform an action on

the model Display a view of the
domain

Domain Model
.~~~ Aggréegate B Jl
Aggregate A ~
/7

\ View Model

\ /
\ / >
\ . \' S———>
N 4
N p
S.o \éggre’g/at,ef Database

/ Domain event is saved
. . Domain as a materialized view
Publish change in Event

state of model

FIGURE 8-12: View store separated from transactional storage.

Bounded contexts can form large systems by communicating via technical infrastructure. Figure 8-14
shows various clients working together to define a larger system. The methods of integrating bounded
contexts feature in Part II of this book,
with the user interface needs being
covered in Part IV.

Sometimes business processes span 3 Infrastructure

multiple bounded contexts. For these
cases, you employ the use of a process
manager to coordinate business

tasks. Figure 8-15 shows a process
manager that contains business task
logic to coordinate larger processes.
Similar to the application services,

the process managers will be stateless
apart from the state used to track

task progression, and will delegate
back to applications to carry out any
work. This pattern is explored in
Chapter 25, “Commands: Application
Service Patterns for Processing Business
Use Cases.” FIGURE 8-13: Various clients of an application.

entation

Application Service

Application Clients | 119

ding Infrastructure

FIGURE 8-14: A system composed of multiple bounded contexts.

Process Manager
Messaging
A process manager Infrastructure
coordinates a business Apglication Service
process that spans more than
a single bounded context Layd

Messaging
nfrastructure

istence

FIGURE 8-15: A process manager.

120 | CHAPTER8 APPLICATION ARCHITECTURE

THE SALIENT POINTS

>

DDD does not require a specific architecture—only one that can separate the technical con-
cerns from the business concerns.

Separate the concerns of your application, and isolate business complexity from technical
complexity by layering your application.

Outer layers depend on inner layers. Inner layers expose interfaces that outer layers must
adapt to and implement. This form of dependency inversion protects the integrity of the
domain and application layers.

The domain layer is at the heart of your application. It is isolated from technical complexities
by the application layer.

Application services expose the capabilities of a system by abstracting the domain logic to a
higher level.

Application services are based around business use cases; they are the clients of the domain
layer. They delegate to the domain layer to fulfill the use cases.

Application services should remain ignorant to the clients that consume them. Clients should
adapt to the API of the application, which enables the support of discrepant clients.

The application service layer is the concrete implementation of the bounded context
boundary.

Common Problems for
Teams Starting Out with
Domain-Driven Design

WHAT'S IN THIS CHAPTER?

> Understanding why Domain-Driven Design is about more than just
writing code

> Avoiding the trap of overemphasizing the tactical patterns

> Why incorrectly applying Domain-Driven Design will make simple
problems more complex and frustrate teams

> Realizing that strategic design, collaboration, and communication
are more important than the Domain-Driven Design pattern
language

> The wasted effort of teams not focusing on the core domain

> The pitfalls teams fall into when applying Domain-Driven Design
without a domain expert or an iterative development methodology

> The antipattern of striving for Domain-Driven Design perfection

Domain-Driven Design (DDD) is a philosophy born out of a need to realign the focus of
development teams writing software for complex domains. It is not a framework or a set
of predefined templates that you can apply to a project. Although there is value in design
patterns and frameworks, DDD emphasizes the value in collaboration, exploration, and
learning between the business and development team to produce useful and relevant software.
Teams should embrace the problem domain they are working within and look outside of their
technical tunnel vision. The most fundamental point to being a great software craftsman is to

122 | CHAPTER9 COMMON PROBLEMS FOR TEAMS STARTING OUT WITH DOMAIN-DRIVEN DESIGN

understand the problem domain you work within and value this as much as you value your technical
expertise.

Teams new to DDD or those that do not understand the core concepts can experience problems
when applying the philosophy to their projects. These common problems are presented here with
explanations as to why teams are finding it difficult to adopt the philosophy.

OVEREMPHASIZING THE IMPORTANCE OF TACTICAL PATTERNS

DDD presents a selection of tactical patterns to help with Model-Driven Design and to aid in the
creation of a domain model. A quick Google search on DDD shows you that these building blocks
have been overemphasized and are often mistakenly thought of as the most important part of DDD.
Evans himself often remarks that he wished he had put the more strategic patterns of DDD rather
than the building block patterns at the beginning of the book because most people seem to stop
reading after this set of patterns.

A focus on the tactical coding patterns of DDD highlights a bigger problem: technical people who
are only focused on technical patterns and writing code. When designing software for systems with
complex logic, typing code will never become a bottleneck. The code is an artifact of developers and
domain experts working together and modeling the problem domain. The code represents the end
of the process of collaboration and discovery. A developer’s job is to problem solve, and problem
solving is sometimes easier done away from the keyboard in collaboration with domain experts. In
the end, working code is ultimately the result of learning and understanding the domain.

Using the Same Architecture for All Bounded Contexts

DDD does not dictate a framework, tool set, or application architecture. You don’t have to use
CQRS, event sourcing, event-driven, RESTful services, messaging, or object-relational mappers to
apply the principles of DDD. What it does insist on, though, is that the complexity of your domain
model is kept isolated from the complexities of your technical code. Any architecture that supports
this is a good fit for DDD. Domain logic and technical complexity change at different rates; as a
result, the organization of these different contexts is key to managing complexity.

Architectures are bounded context and not application specific. The architect for a simple bounded
context with low complexity could be composed of a combination of a layered design with the
transaction script pattern for the domain layer. A more collaborative domain could employ CQRS,
and a complex domain would favor the rich domain model pattern.

Striving for Tactical Pattern Perfection

Teams concerned only with writing code focus on the tactical patterns of DDD. They treat the
building block patterns as a bible rather than a guide, with no understanding of when it’s okay to
break the rules. They spend wasted effort adhering to the rules of the patterns. This energy is better
spent on understanding why it needs to be written in the first place. DDD is about discovering what
you need to write, why you need to write it, and how much effort you should use. As mentioned
before, the tactical patterns of DDD are the elements that have evolved the most since Eric’s book
was written, with the strategic side of DDD remaining faithful to Eric Evan’s original text. How

Overemphasizing the Importance of Tactical Patterns | 123

development teams create domain models is not nearly as important as understanding what models
to write in the first place and how to develop them in a bounded context. Understanding the what
and the why of problem solving is a more important process than how you are going to implement it
in code.

Mistaking the Building Blocks for the Value of DDD

Many DDD projects fail because the tactical patterns of DDD are picked, but the strategic and
collaborative sides of DDD are neglected. Teams do not take the time to knowledge-crunch with
the business. They do not concentrate on the domain model and on careful abstractions. They don’t
establish a ubiquitous language (UL). Using only the tactical pattern language of DDD is known as
DDD lite. Following a DDD lite approach is fine, but this is not embracing the DDD philosophy.
Teams mistakenly thinking that they are applying DDD will be missing out on much of where the
value of DDD lies: collaboration, UL, and bounded contexts. Focusing only on the patterns to aid
the modeling design omits the bigger picture of problem solving.

In contrast, many of the strategic patterns of DDD can be used in the creation of any medium-to-
large-scale business system regardless of the underlying complexity. In fact, all the strategic patterns
have many benefits, including identifying whether a UL should be defined and whether the tactical
patterns should be used at all. Subdomains can help break down complex problem domains to aid
communication and identify what is important. Context maps reveal integration points between
different contexts along with the relationships between teams. However, it is sometimes difficult to
justify the tactical patterns of applying the domain model pattern to anything other than a complex
or constantly evolving domain.

Focusing on Code Rather Than the Principles of DDD

One of the most often-asked questions on software development forums is this: Can I see a sample
application? There are probably many good solutions that show the result of a product developed
under a DDD process, but much of the benefit of DDD is not revealed when you only examine the
code artifact. DDD is performed on whiteboards, over coffee, and in the corridors with business
experts; it manifests itself when a handful of small refactorings suddenly reveal a hidden domain
concept that provides the key to deeper insight. A sample application does not reveal the many
conversations and collaborations between domain experts and the development team.

The code artifact is the product of months and months of hard work, but it only represents the
last iteration. The code itself would have been through a number of guises before it reached what
it resembles today. Over time, the code will continue to evolve to support the changing business
requirements; a model that is useful today may look vastly different to the model used in future
iterations of the product.

If you were to view a solution that had been built following a DDD approach hoping to emulate the
philosophy, a lot of the principles and practices would not be experienced, and too much emphasis
would be placed on the building blocks of the code. Indeed, if you were not familiar with the
domain, you would not find the underlying domain model very expressive.

DDD does prescribe a set of design best practices, patterns, and building blocks that are often
mistakenly thought to be core to applying DDD to a product. Instead, think of these design artifacts

124 | CHAPTER9 COMMON PROBLEMS FOR TEAMS STARTING OUT WITH DOMAIN-DRIVEN DESIGN

as merely a means to an end used to represent the conceptual model. The heart of DDD lies deep in
the collaboration between the development team and domain experts to produce a useful model.

MISSING THE REAL VALUE OF DDD: COLLABORATION,
COMMUNICATION, AND CONTEXT

A team focusing too much on the tactical patterns is missing the point of DDD. The true value of
DDD lies in the creation of a shared language, specific to a context that enables developers and
domain experts to collaborate on solutions effectively. Code is a by-product of this collaboration.
The removal of ambiguity in conversations and effortless communication is the goal. These
foundations must be in place before any coding takes place to give teams the best chance of solving
problems. When development does start to focus on language, context and collaboration enable
code to be well organized and bound to the mental models of the business.

Problems are solved not only in code but through collaboration, communication, and exploration
with domain experts. Developers should not be judged on how quickly they can churn out code;
they must be judged on how they solve problems.

Producing a Big Ball of Mud Due to Underestimating
the Importance of Context

Context, context, context, and more context. It’s a fundamental concept in DDD. Context helps you
organize solutions for large problem domains. All problems cannot be solved using the same model.
Various models need to be created to solve different problems. Creating models within defined
context boundaries is essential to keep your code in a manageable state and avoid it turning into

a Big Ball of Mud (BBoM). Understanding where contexts end and begin is the responsibility of a
context map. Without the notion of context and a context map to guide you, teams cannot deliver
value because they are constantly fighting the unorganized mess of their codebase.

If teams don’t understand other contexts, changes they make may bleed into those other contexts.
Teams without a clear understanding of the boundaries of a model risk violating its conceptual
integrity. Blurred or no lines of applicability between models often results in a merging of models,
which quickly leads to a BBoM. A context map is vital to understanding boundary lines and how to
uphold the integrity of models.

The biggest issue that contributes to legacy code and technical debt is how it’s organized. Code is
easy to write, but without due care and attention to how it is structured, it can become extremely
hard to read. Understanding about context enables you to isolate unrelated concepts so that models
are more pure and focused. Think about it like applying the Single Responsibility Principle (SRP)
but at an architectural level. Code that is easier to maintain and read will allow teams to deliver
value faster, which is the essence of DDD.

Recognize when domain experts are talking in a different context but still using the same terms.

If the same terms are used within the business, it is easy to fall into the trap of thinking that the
models can be reused. Beware implicit models that are used for more than one context. It’s better
to create explicit models. Apply the principle of Don’t Repeat Yourself (DRY) to a bounded context

Missing the Real Value of DDD: Collaboration, Communication, and Context | 125

only and not a system. Don’t be afraid to use the same concepts and names in different contexts.
The most important thing teams need to know about is that they should protect their boundaries.

Causing Ambiguity and Misinterpretations by
Failing to Create a UL

Effective communication is essential for understanding and solving challenges within the problem
domain. Without strong communication, collaboration between the development team and domain
expert cannot flourish. Teams that do not value the need for a shared language are likely to employ
technical abstractions and build a model using their own shared technical language. When the
teams seek help or validation on their model, they are required to translate it for domain experts to
understand. At best, this translation is a bottleneck for development; at worst, it can end up with
the team building around concepts and themes that are not important or that the domain experts do
not understand.

Without a shared language, you cannot create a shared model. This shared vision of the problem
enables the capturing of implicit concepts and collaborative problem solving. The process of creating a
language is a direct result of collaboration between the development team and domain experts. Being
able to easily solve problems and understand the problem domain is where the payoff comes from.

Without a UL, contexts are hard to discover, because a bounded context is primarily defined by the
applicability of language. Models created without context and explicit language quickly turn into a
BBoM as concepts with the same name are modeled as one.

The formulation of a language can have a big impact on a business and product development. It
helps to explicitly define common concepts, and just like a pattern language, remove ambiguity
when talking through complex domain logic and business capabilities.

With a UL, domain experts can offer solutions to software problems when implementing the
domain model as much as the development teams themselves.

Designing Technical-Focused Solutions Due
to a Lack of Collaboration

Without collaboration, key concepts of the problem domain can be missed, and easy-to-understand
concepts can be overemphasized. Within an organization, important facets of a domain are often
implicit; teams not working with domain experts can overlook these, instead focusing on the lower-
hanging fruit like the nouns of a domain. Without collaboration to validate understanding and
reveal hinted-at concepts, development teams will abstract around technical terms, and business
users will require translation to understand how the problems in the solution space relate to the
problem space.

Collaboration is all about getting lots of people with different points of view working on creating
a model of the problem domain that can be used to solve problems. No one has the authority on a
good idea, and no suggestion is stupid.

Trying to collaborate on knowledge crunching with anyone other than a domain expert can be
a wasted effort. A business analyst who may act as a proxy for a domain expert will be able to

126 | CHAPTER9 COMMON PROBLEMS FOR TEAMS STARTING OUT WITH DOMAIN-DRIVEN DESIGN

give you requirements and communicate inputs and outputs, but he will not be able to assist with
shaping a model to fulfill the use cases.

SPENDING TOO MUCH TIME ON WHAT'S NOT IMPORTANT

Teams must understand the underlying reason why they are developing software instead of
integrating an off-the-shelf solution. Understanding the strategic vision and the choice of build
over buy helps teams concentrate effort. Without a focus on what is core to the success of a project,
teams with a limited resource will not apply that resource in the most important areas — the core
domains. Spreading resources too thin in the most important areas of a project is an antipattern.

The design of software will suffer without a clear and shared vision of the goal of the product, often
captured using a domain vision statement. Well-informed and educated design decisions can be
made when developers understand the intent behind business users’ requirements. Missing the intent
of the business and blindly developing leads to poor results.

Accepting that not all of a system will be well designed and that not all of a system needs to be well
designed is a big step forward for a team. Without a focus on the key aspects of a system, talented
members of a team may be distracted by frameworks and instead want to work on the latest
JavaScript framework at the presentation layer instead of the core aspects of a product.

In addition to teams, it’s important that domain experts have a clear understanding of the core domain.
A domain expert who does not share the vision of a stakeholder or is unsure why the software is being
written will not be effective during knowledge-crunching sessions due to negativity or confusion.

MAKING SIMPLE PROBLEMS COMPLEX

Applying techniques designed to manage complex problems to domains with little or no complexity will
result in at best wasted effort and at worst needlessly complicated solutions that are difficult to maintain
due to the multiple layers of abstractions. DDD is best used for strategically important applications;
otherwise, the deep knowledge gained during DDD provides little value to the organization.

When creating a system, developers should strive for simplicity and clarity. Software that is full of
abstractions achieves little more than satisfying developers’ egos and obscuring the reality of a simple
codebase. Developers who aren’t engaged with delivering value and are instead only focused on technical
endeavors will invent complexity because they’re bored by the business problem. This kind of software
design can lead to frustration for teams in the future that need to maintain the mess of technical layers.

Applying DDD Principles to a Trivial Domain with Little
Business Expectation

Simple problems require simple solutions. Trivial domains or subdomains that do not hold a
strategic advantage for businesses will not benefit from all the principles of DDD. Developers who
are keen to apply the principles of DDD to any project regardless of the complexity of the problem
domain will likely be met with frustrated business colleagues who are not concerned with the less
important areas of a business.

Underestimating the Cost of Applying DDD | 127

DDD is a set of principles to help you manage complex problem domains that hold significant advantage
for a business. Problems with a low business expectation should be tackled in a no-thrills manner. This
is not to say that they should be built in a haphazard manner. On the contrary, they should be built to be
performant and maintainable, but problems that have little logic need straightforward solutions.

Large complex systems will have many subdomains, some containing complex logic key to strategic
importance of a product, whereas others will simply be forms to manage data with little or no
complexity. The tactical patterns of DDD along with collaborating to build a UL to communicate
models should be reserved for the core subdomains only. These are the areas that need to be clear to
aid rapid change or that model complicated and intrinsic logic. Teams should not waste energy on the
generic domains or subdomains beyond keeping them working and isolated from the core domains.

Disregarding CRUD as an Antipattern

Not all of your system will be well designed; trying to perfect an entire codebase can be wasted
effort. Your focus and energy should be on the core domain, for anything else good is good enough.
For systems with little or no domain logic and with no more than forms over data opt for a simpler
form of architecture such as a create, read, update, and delete (CRUD)-based system to decrease
time spent and increase availability for the core domain.

Using the Domain Model Pattern for Every Bounded Context

The domain model pattern is useful for complex or frequently changing models. The effort required
to employ the domain model pattern for models that are generic or lack domain logic will be far
greater than any value that will be gained. Utilize model-driven design and the domain model
pattern for the core domain, and use other domain logic patterns for simpler parts of your system.

Ask Yourself: Is It Worth This Extra Complexity?

When junior developers learn about design patterns, they try to apply them to every piece of code
they write. This behavior is often seen when teams learn about DDD. They focus only on the
tactical patterns of DDD, blindly applying these patterns to every project regardless of whether it
is justified. This eagerness to apply a new philosophy without due consideration as to whether the
process is a worthwhile endeavor for the software can lead to needless complexity where a simple
solution would have sufficed.

Don’t develop nonstrategic software if off-the-shelf software will suffice. If the effort to automate
a manual process is too great, just leave it manual. Remember: Solutions don’t always have to be
technical.

UNDERESTIMATING THE COST OF APPLYING DDD

Applying the principles of DDD is hard and costly both in time and resource. It makes sense to only
fully apply them to the most important areas of your system: your core domain. The principles hang
on a business willing to work with you on solutions rather than have you work in isolation. DDD
often is more valuable to the nontechnical parts of product design.

128 | CHAPTER9 COMMON PROBLEMS FOR TEAMS STARTING OUT WITH DOMAIN-DRIVEN DESIGN

Trying to Succeed Without a Motivated and Focused Team

DDD is not for everyone. It is certainly not the right fit for every project. To gain the most benefit
when following DDD, you need a complex core domain that will be invested in over time, an
iterative development process, and access to domain experts. However, that is not all that is
required. There are a number of other skills that you need to succeed at DDD. To be effective at
DDD, you need the following;:

> Solid design principles required for refactoring
> Sharp design sense
> A focused, motivated, and experienced team

You need disciplined developers who are willing to work with domain experts and understand the
business rather than worry how they can wedge the latest JavaScript framework into a project.

Remember: DDD isn’t a silver bullet. Just as switching from an upfront waterfall approach to a more
agile/XP project methodology didn’t solve all your software development problems, opting to follow
DDD won’t suddenly produce better software. The common denominator in any successful project is a
team of clever people who are passionate about what they are doing and who care about it succeeding.

Attempting Collaboration When a Domain Expert Is Not
Behind the Project

Business ownership and investment especially from domain experts is key to successful
collaboration. If a development team is working alongside domain experts who are not invested

in the project or do not understand the intent or vision, they will unlikely discover a useful model,
create a UL, and work as an effective team. Development teams are great at designing systems to
handle challenges in the problem domain. However when collaborating with a domain expert, they
can go further and work together to remove the need for software solutions by removing issues at
the source and redefining business processes.

Learning in a Noniterative Development Methodology

DDD is about brainstorming. It’s about collaborative learning. It’s about not stopping at your first
idea but continuing to experiment so you discover something better or simply to validate your initial
idea. All this takes time, and a methodology that doesn’t support this can’t support DDD.

A useful model will not be created on the first attempt; therefore, an iterative development
methodology is required to hone a design. Models evolve. Teams that don’t appreciate that the
model and language are only valid for a given time will quickly see their useful creation turn into a
BBoM. A model needs love. It needs to be refined and refactored as more insight into the domain is
gained and as new use cases challenge the model.

It’s also worth noting that, to experiment and evolve a model, you need to have the safety of unit
tests. That is not to say that you must follow a test-driven process; instead, you must ensure your
code can be valid after a series of refactors.

Underestimating the Cost of Applying DDD | 129

Applying DDD to Every Problem

For every solution, there must be an appropriate problem. DDD is a design philosophy suited to
a particular problem space. It is a great tool to have in your toolbox. However, if your business
is not complex or isn’t changing frequently then don’t automatically reach for the DDD hammer:
remember there are other better suited tools in your development tool kit. Only focus your
modeling efforts and DDD on the most complex bounded contexts that bring the most value to
your customer.

Not all subdomains are complex. Some domains or contexts may not even need a fully fledged
domain model and may just contain data with no business logic that simply requires the basic
CRUD operations. For low-complexity contexts, favor the use of a CRUD/Active Record/
Transaction Script-based application, and leave the tactical patterns of DDD for parts of your
system that are important to your customer, that are complex, and that change frequently.

Ask yourself: Is this extra effort helping you deliver your solution, or is it slowing you down?
Keep things simple but not simplistic. Don’t over engineer a solution or try to leverage unhelpful
frameworks. Keeping things simple is an art form and takes practice and a pragmatic mind-set.

Sacrificing Pragmatism for Needless Purity

Don’t try to strive for perfection in areas that don’t need it. For generic or supporting subdomains,
keep things simple, straightforward, and uncomplicated. Use CRUD and simple domain logic
patterns. Get the code written so it works; then move on to the core domain. The core domain is

the area where you can strive for perfection. Small balls of mud are sometimes better in bounded
contexts that are unimportant; they get the code written quickly and get it out of the way. If you
need to change it, you can overwrite it. For areas of your product that are unimportant, unlikely

to change or be invested in over time, favor working code over perfect code. Good is often good
enough. Don’t worry if you are doing it right or start to seek confirmation; this will be wasted effort
and a distraction. Leave purity for the areas that count.

Wasted Effort by Seeking Validation

When you build a system following the principles of DDD, you do not receive a certificate in the
post from Eric Evans congratulating you on your achievement. Blindly following any patterns
language or methodology without considering your own unique context is foolhardy. Trying to
adhere to a set of rules for no other reason than to compile with a methodology is an antipattern.
The DDD philosophy is not about following a set of rules or applying coding patterns. It is a process
of learning. The journey is far more important than the destination, and the journey is all about
exploring your problem domain in collaboration with domain experts rather than how many design
patterns you can employ in your solution.

Search forums and read DDD blog posts to discover how teams are collaborating with the business
to aid learning and increase discoveries. Don’t try to create the perfect repository pattern, and don’t
seek confirmation from your peers who aren’t involved directly in your project because without the
full context, you must take any advice lightly.

130 | CHAPTER9 COMMON PROBLEMS FOR TEAMS STARTING OUT WITH DOMAIN-DRIVEN DESIGN

Always Striving for Beautiful Code

Teams that obsess with applying design patterns and principles regardless of the actual need will
likely create overly complex and confusing architectures that miss the goal of the product in the first
place. Teams should understand the motivations behind design patterns and use them judiciously.
Blindly employing the tactical patterns of DDD does nothing to add value for the business.

A supple design in important areas that frequently change aids a model’s ability to be flexible and
evolve without having large rippling effects. Painstakingly striving for elegant design in areas that
offer little business value and will not be invested in is a waste of efforts. It is far better to have
small balls of mud, isolated from other contexts that can easily be replaced, rather than trying to
strive for beautiful code everywhere.

When working in the core domain, teams should certainly wait before committing to a pattern and
a way of thinking. Delaying refactoring and living with the code to see what causes friction/changes
the most can reveal more about the domain and lead to a more informed design choice.

Don’t be distracted by patterns, frameworks, or methodologies; they are implementation details.
Your goal is to understand your domain at a deeper level to be best equipped to solve problems
within it. This is the true value of DDD.

DDD Is About Providing Value

Don’t let design patterns and principles get in the way of getting things done and providing value to
the business. Patterns and principles are guides for you to produce supple designs. Badges of honor
will not be given out the more you use them in an application. DDD is about providing value, not
producing elegant code.

THE SALIENT POINTS

> The tactical patterns of DDD can guide you toward creating an effective domain model;
however, this area of DDD is evolving, and the implementation details have been
overemphasized. The patterns may have value, but this is not where the value of DDD lies.

> DDD is far more than coding. Collaboration with domain experts to knowledge crunch and
have a shared understanding of the problem domain expressed in a ubiquitous language are
the pillars of DDD.

> Context is everything; context and isolation retain the integrity of your code. It reduces
cognitive load and makes a model specific.

> You need a smart dedicated team willing to learn about the domain.
You need access to a domain expert. Teams can’t reveal deeper insights without them.

> Use CRUD for bounded contexts with low complexity. You are not a bad programmer if you
don’t have a domain model.

> Bounded context and the ubiquitous language are the foundation of DDD.

> DDD is about the process of learning, refining, experimenting, and exploring in the quest to
discover a useful model in collaboration.

10

Applying the Principles,
Pr%@tices, and Pattgrns of DDD

WHAT'S IN THIS CHAPTER?

> How to sell Domain-Driven Design

> Applying the principles and practices of Domain-Driven Design to
your project

\

Understanding the importance of exploration and experimentation
in the quest to find a useful model

Why avoiding ambiguity will greatly improve your modeling efforts
Removing the complexities of technology when problem solving

Why you shouldn’t worry about the perfect domain model

Y Y VY Y

How you know when you are doing it right

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
domaindrivendesign on the Download Code tab. The code is in the Chapter 10 download
and individually named according to the names throughout the chapter.

Over the previous nine chapters, you have gained an overview into the philosophy of Domain-
Driven Design (DDD). This chapter brings all of that knowledge together to show you how
you can start to apply the principles and practices of DDD to your next project. The remainder
of this book focuses on coding patterns to produce an effective domain model in code,
integrate bounded contexts, and architect maintainable applications.

http://www.wrox.com/go/domaindrivendesign
http://www.wrox.com/go/domaindrivendesign

132 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

SELLING DDD

DDD is not a silver bullet, and it shouldn’t be sold as one. In the same way that following an agile
methodology won’t solve all of your problems, neither will DDD; however, it is a powerful and
extremely effective philosophy when used in the correct circumstances, such as these:

> You have a skilled, motivated, and passionate team that is eager to learn.

> You have a nontrivial problem domain that is important to your business.

> You have access to domain experts who are aligned to the vision of the project.
> You are following an iterative development methodology.

Without these key ingredients, applying the principles and practices of DDD will overcomplicate
your development effort rather than simplify it. However, if your particular circumstances meet the
preceding list, then applying the principles and practices of DDD can greatly increase the value of
your development effort.

Don’t sell DDD as a project methodology; instead, understand and apply the principles appropriately
and where you can gain value. Just as design patterns are best arrived at when you refactor, the
principles and practices of DDD should be used only when necessary, and with each on its own merit.
Apply any technique judiciously and only when you can gain an advantage and it can give you value.

Educating Your Team

When communicating the philosophy of DDD to your team, focus not on the pattern language
but instead on the alignment with the business, the importance of strategic contexts, and the focus
on language used to describe a model. The principles and patterns of strategic DDD are far more
powerful and useful than the tactical patterns. A team focused solely on the software patterns will
miss the true value of DDD and will likely pay the cost of applying the practices without reaping
the rewards.

Technology is not the solution to business problems; it is merely an implementation detail. Problem
solving is achieved through collaboration with domain experts who hold the key to discovering

a useful model. This model is brainstormed on cards or a whiteboard before being implemented

in Visual Studio (or your favorite IDE). Remember: Technology can complicate problem solving;
focusing on an abstract conceptual model free from the clutter of infrastructure and technical
concerns will enable teams to build a solution that communicates the intent of the domain and can
be understood by the business.

Speaking to Your Business

Your business stakeholders don’t want to hear about the next new development philosophy or
methodology; they just want you to deliver value for them. Agile, Service-Oriented Architecture
(SOA) and the cloud have all been overhyped, promising to solve all development problems but
failing to do so. Instead, talk only of your desire to learn more about the business you work within
to give more value. Talk of the need for the development team to be more aligned to the vision and
intent of the business. A stakeholder will see the value in the development team spending time with
business experts and aligning themselves to the expectations of the business.

Applying the Principles of DDD | 133

DDD does not work without the commitment of domain experts. If you can articulate the
importance of having an expert from the business available to your stakeholders, you are setting
yourself up to succeed. Of course, you are free to talk to your stakeholders about DDD, but it’s best
to focus on the need for collaboration. The success of a product falls on the commitment level of the
business and its experts; this is how you sell DDD. Empowering a team with a deep understanding
of the problem domain logic enables it to produce a better product.

APPLYING THE PRINCIPLES OF DDD

With a business that understands the value of a domain expert’s time and a development team that
is focused on driving a solution to a complex problem around a model of the domain created in
collaboration with a domain expert, you will be in a good position to apply the principles of DDD.
This section details the stages of project inception to developing a solution, and which practices to
use when. However, the key to applying DDD is to start simple. Do the simplest thing possible until
you encounter complexity or ambiguity. When you find ambiguity during conversation, explicitly
define it within the ubiquitous language (UL). When your model is becoming too large, decompose
the complexity and apply the strategic patterns of code organization and modeling techniques. If
you keep things simple and arrive at applying the principles and practices rather than trying to crack
a nut with a sledgehammer, you will get immense value from DDD.

Understand the Vision

Before capturing requirements, it’s important to align your team with stakeholders’ expectations.
Start a meeting with a stakeholder by asking open questions that draw out the reason you are opting
to build rather than buy a product, and that help to explain the vision of the product. The following
questions are powerful:

» What is the business goal/driver for this product?

> What value will this product bring to the business?

> How will you know if this is a success? What does good look like?
> How is this different from what has been done before?

By listening to the stakeholder answering your questions, you can identify the most important part of

the product—the area of the software that is the fundamental reason you are building it. Capture this

information and create a domain vision statement that aligns your team to a common goal. Your team
needs to understand what will make or break the product, what is essential, and where the value is.

During the meeting, you may discover that the product is not special and is in fact a generic
solution that just happens to be more cost effective to build in-house. If so, make that explicit,

and understand its importance to the business and its future. It could also be the case that this is a
fail-fast product—a prototype to test the appetite of customers. These insights will enable you to
understand where the value lies and what the business is trying to achieve. With this understanding,
you can determine if all the practices of DDD are going to be effective for your project.

Once you understand and share the intent of the product and the stakeholders’ goals, you can
capture the features of the product while always aligning to the overall vision of the product.

134 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

Capture the Required Behaviors

An effective way to engage stakeholders when gathering requirements is to apply the behavior-driven
development (BDD) methodology. BDD is a shared language that helps you capture the behaviors

of a system. You can think of it as a UL for requirements. It enables your team to understand the
requirements from your stakeholder from a nontechnical perspective. The practice of BDD and the
focus on capturing requirements in a language the business understands and which explicitly shows
value is a great exercise in demonstrating the power of a shared language to aid communication.
This process helps to educate the team on the power of language and the evil of ambiguity in
meaning. Use these sessions to explicitly define terminology. This exercise will warm up the team
members for when they collaborate on a UL to describe the model that will implement the rules,
logic, and processes needed to satisfy the system’s behaviors.

What you are capturing from the stakeholders are use-cases, inputs, and outputs. These business use
cases form your application services. If they are complex, they drive the decision on what domain
logic pattern you will implement. During requirements gathering, focus on what the stakeholder
wants, when, and why. The why part is essential. Asking the question helps to validate why the
stakeholder wants what he says. During the requirements stage, stay in the problem space, and
focus on the opportunities that this product is going to bring. How you are going to satisfy the
requirements can wait until you understand and share the vision.

I have seen many teams rush through requirements, eager to jump to a solution without fully
exploring the problem. Don’t jump to a solution too quickly; ensure that you explore the problem
space with your stakeholders. Often, stakeholders are unclear on exactly what they want. By
exploring the problem space, you can draw out the real business need and often offer better
behaviors before wasting time on solutions to needs the business doesn’t really have.

As you start to generate story cards full of features, you may find that the size of the product is
becoming too big to manage or ambiguity is occurring in the problem space. You might also be
losing sight of the bigger picture and the core reason that this product is being built. When this
occurs, the problem space needs to be distilled.

Distilling the Problem Space

If you find that the problem domain is becoming too large to manage, you can ease cognitive load
by abstracting the problem to a higher level by creating subdomains. It’s useful to look for the
capabilities that support the product and create subdomains from these. Business capabilities are the
activities that support a business process; look for these activities outside of departmental structures
or functions. Some will be generic, some supporting. The ones of real interest that will make or
break the product are the core domains.

Focus on What Is Important

When you have decomposed your problem space, ensure that you spend the majority of your time
with stakeholders understanding required behaviors for the core domain. Your core domain may
very well be small, which is fine. Pay particular attention to conversations in this area, because
they will be the most interesting and offer the most value to you. The core domain should directly
support the overall vision that the stakeholders have; if it does not, you may have incorrectly
identified the core domain, or you may need to clarify the vision with your stakeholders.

Applying the Principles of DDD | 135

Understand the Reality of the Landscape

With a thorough understanding of the problem space and an alignment on where the value of

the system is, you can start to model a solution. However, before you start creating a solution to

any project, it’s of utmost importance to understand the environment that you will be working

in. Understanding the state of the software solutions already in production is essential to making
informed decisions on how you will integrate your product. The best way to capture the landscape is
by creating a context map.

The team needs to identify the different bounded contexts in play that will directly affect or be
affected by your product. The team needs to identify how these contexts interact, what protocols
they integrate through, and what data they manage. To achieve this, follow these steps:

1. Determine what models the team is aware of that directly affect or will be affected by the
problem area. Draw these contexts, name them, and show who is responsible for them. If
you are not sure where to start, look at the organizational structure of the domain you are
working in, because most systems are built around departmental communication. Then look
at the development team structures.

2. Map the integration points and methods of integration.

w

Map the data that is exchanged and who owns it.

4. Label the relationship between the contexts. Is your team downstream and reliant on another
team? Or is your team upstream and must communicate changes to other teams downstream
from it?

5. Rinse and repeat until you have captured all that you can about the landscape you will be
developing in.

The whole team must understand the context map. Hang it on the wall for all the team to see and
other teams to understand. This is your war map. It should be simple enough for all to draw quickly,
so don’t spend too much time on UML diagrams. Instead, get a bird’s-eye view, and as you start to
integrate, zoom in on touch points and then go into detail.

Modeling a Solution

Before starting to model a solution and applying the principles of DDD, you need to ensure the
product you are about to provide a solution for meets the following criteria:

> Is a complex problem or has complexity in a subdomain

> Is important to the business and has high expectations of it
> Has accessibility to a domain expert
>

Has a motivated and smart team

If you don’t have a complex problem or a portion of your problem is not complex, then building a
domain model may be overkill. When there is little logic and merely data manipulation, you should
follow a simpler method to manage domain logic, such as transaction script or active record. That
way you can avoid some of the more costly practices.

136

| CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

If the product is not important to the business and there are low expectations, it’s probably not
worth the effort of building a solution to stand the test of time. Build good enough and build

for replacement rather than investment. You can try and utilize an off-the-shelf solution. If your
problem is generic there may well already be an open source solution out there that fits your needs.

If you don’t have access to a domain expert, discoveries in the domain will not happen. The team
will abstract around technical concerns, and the language in the codebase will not reflect the problem
domain. Contexts will not be well defined, and quickly the code will evolve into a ball of mud.

If your team is not motivated or lacks the knowledge of enterprise design patterns and principles,
it may be best to favor a simpler pattern to organize domain logic so you don’t overcomplicate the
development efforts.

All Problems Are Not Created Equal

Not all parts of the problem space require the full spectrum of the principles and practices of DDD.
You must pick your battles. For areas of your solution that don’t require the collaboration with a
domain expert, don’t involve her. For areas that don’t require the domain model pattern to represent
an abstract model in code, don’t create one.

If a portion of your problem space is complex, your business has high expectations, you have access
to a domain expert and a team up to the challenge, you have the exact criteria for which DDD can
help you manage the development of your product.

Engaging with an Expert

A domain expert is a subject matter expert with deep knowledge of the problem domain. Whereas a
stakeholder defines what the system needs to do, a domain expert collaborates with the development
team, using his insight, expertise, and experience to model a solution that satisfies the behaviors.

A domain expert could be a long-term user of a current system that has in-depth knowledge of the
processes and logic of the problem space. The domain expert could equally be the systems product
owner or simply someone who works in the department and has worked in the domain for many
years. The point is that the term domain expert does not refer to a title; it’s anyone in the business
who can offer expertise in the problem domain.

DDD doesn’t work without a domain expert. It’s as simple as that. Without a domain expert, much
of the insight and rich domain knowledge and language will not be discovered. Without an expert,
the development team may seek advice from users of a current system, and while knowledgeable
on the current processes, may not be best placed to provide game-changing wisdom or domain
intelligence. It cannot be stressed enough the importance of seeking out a domain expert and
engaging with that person. A domain expert will have a day job; her time will be precious, so it is
vital that you utilize time with her wisely.

Business analysts are not invalid. They hold skills that developers and domain experts may not
possess. Business analysts can facilitate conversations with domain experts and can help the team
capture terminology that forms the UL.

It is important for the stakeholder to trust the domain expert and regard this person as an expert.
It is also important for the expert to understand why the project is being undertaken and what its
goals are. A domain expert at odds with the nature of the project may turn out to be more of a

Applying the Principles of DDD | 137

hindrance than a help. However, her concerns and challenge with the project might be justified. In
this case, ensure that the stakeholder and domain expert communicate to allow any fears or worries
to be alleviated.

Try to collocate your project team with the business. Your team should be able to access the domain
experts and users easily and regularly to ensure constant feedback. Domain experts are your
primary source of knowledge when validating your domain model. Extract as much information
from the heads of your domain experts as possible. By facilitating domain experts’ knowledge, you
unlock a more useful model.

Select a Behavior and Model Around a Concrete Scenario

When working in the solution space, ensure that you focus on satisfying the behaviors of the
product rather than trying to model the entire problem domain. Drive your modeling endeavors by
selecting a behavior and defining concrete scenarios to use as examples. From this, the team and the
domain expert can produce a model that is appropriate to the problem at hand. This practice helps
to prevent overzealous developers from producing a one-model-to-rule-them-all view of the problem
domain that isn’t really tailored to the needs of the system, and is more a reflection of reality rather
than a useful abstraction of it.

As an example, consider this coupon feature for an e-commerce domain:
To increase customer spending
As a shop
I want to offer money-off coupons

To start to shape a model for this feature, you must model to meet specific concrete scenarios. This
feature has several scenarios associated with it. The following is one example:

Scenario: A customer receives a discount on a basket.

He has a coupon that offers a discount of 10% off the value of a basket.

The coupon is valid for baskets that have an initial total exceeding $50.

When a coupon is applied to a basket with a total of $60, the discount should be $6.

During knowledge crunching, the team should listen to the domain expert’s choice of language and
capture concepts that are used to fulfill the scenario. If the team spots potential issues or problems
with the model, it should challenge them with the domain expert.

Collaborate with the Domain Expert on the Most Interesting Parts

When picking scenarios to model, don’t go for the low-hanging fruit; ignore the simple management
of data. Instead, go for the hard parts—the interesting areas deep within the core domain. Focus

on the parts of the product that make it unique; these will be hard or may need clarification. Time
spent in this area will be well served, and this is exactly why collaboration with domain experts is
so effective. Using domain experts’ time to discuss simple create, read, update, and delete (CRUD)
operations will soon become boring, and the domain expert will quickly lose interest and time

for you. Modeling in the complicated areas that are at the heart of the product is exactly what the
principles of DDD were made for.

138 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

Evolve UL to Remove Ambiguity

Ambiguity alongside ignorance of your problem domain is your worst enemy as a developer. Teams
must ensure that during modeling and knowledge crunching, all terms and language are defined
explicitly and the domain expert is happy with the terminology. Everyone must be on the same page
and have a single understanding of a concept. Besides talking to domain experts and each other in a
single language, you must write the codebase with the same terms and concepts to ensure the code
model reflects the mental models in conversation.

The UL is formed from the knowledge crunching exercise between domain experts and the
development team as they start to model a solution to the more important and trickier parts of a
product. Clear and unambiguous communication between the development team and the domain
expert is vital to enable discoveries and to reduce translation cost between the team’s code model
and the domain expert’s mental model. Teams that talk to domain experts about design patterns,
principles, and practices will soon lose their interest due to the painful and costly translation that
is required. The model, even though implemented in code, should be discussed at a higher level of
abstraction so that the domain expert can lend his expertise to solving challenges with every new
scenario that is thrown at it.

As you gain a deeper understanding of the domain you are working in, your UL will evolve. As the
language evolves, so must your code. Refactor your code to embrace the evolution by using more
intention-revealing method names. If you find a grouping of complex logic starting to form, talk
through what the code is doing with your domain expert, and see if you can define a domain concept
for it. If you find one, separate the logical grouping of code into a specification or policy class.

WHAT IS A SPECIFICATION?

A specification represents a business rule that needs to be satisfied by at least part of
the domain model. You can also use specifications for query criteria. For example,
you can query for all objects that satisfy a given specification.

Throw Away Your First Model, and Your Second

When you are starting out on a project, you know little about it, but this is the time when you

will be making important decisions. Your initial model will be wrong, but don’t get too hung up.
The process of learning more about the problem domain is achieved over many iterations. Your
knowledge will grow, and with this you will be able to evolve your model into something useful and
appropriate.

When arriving at the first useful model, most teams usually stop exploring and jump to their
keyboards to implement it. Your first model will unlikely be your best. Once you have a good
model, you should park it and explore the problem from a different direction. Exploration and
experimentation are vital to enable deep discoveries and to learn more about the problem domain;
therefore, make mistakes and validate good ideas by comparing them to bad ones.

Sometimes while modeling, you become stagnant; your solution may have painted you into a corner,
and a new scenario cannot be fulfilled with the current model. This is fine. Instead of trying to
make the scenario fit the model, make a new model that is useful for the existing and new scenarios.

Applying the Principles of DDD | 139

Try to unlearn everything you gained for the first model and take a new direction. Explore and
experiment to reveal insights and offer new solutions.

The result of tackling a problem from various angles is not the creation of a perfect model but
instead the learning and discovery of concepts in the problem domain. This is far more valuable and
leads to a team able to produce a useful model at each iteration.

Implement the Model in Code

Once you have derived a model for the complex subdomains of your problem domain from sessions
with a domain expert, you need to prove it in code. The mental model that was created between
you and your domain expert should be reflected in code with the same terminology, language,

and concepts. Once it turns the mental model into code, the development team may find that the
model does not meet the needs of the scenario, and it needs to make a new concept or change an
existing one. Because of the use of the UL and the shared understanding of the model throughout
the team, communication with the domain expert is easy, and the new solution can be validated

in collaboration and without translation. The update to the code model is reflected in the mental
model, and the two models evolve together.

Creating a Domain Model

The creation of a domain model is an iterative exercise, and the quest to discover a useful model
will see it constantly evolve as new business problems are tackled with it. It is important not to try
to model the whole problem domain but instead select well-thought-through business scenarios that
can be used as an example to test any model produced.

A domain model should constantly adhere to these two principles:

Be relevant: Able to answer questions in the problem domain and enforce rules and
invariants.

Be expressive: Able to communicate to developers exactly why it’s doing what it’s doing.

The creation of a useful model is never completed at the first attempt. In fact, often the initial
incarnation of a domain model is naive and contains little insight into the rich problem domain.
Instead, constant refactoring is required to expose domain knowledge within the codebase.

Evolution and an effective model are discovered through exploration and experimentation. BDD
and Test-Driven Development (TDD) allow you to experiment, knowing that the inputs and outputs
won’t be affected. Start with an anemic domain or simpler patterns, and refactor toward the rich
domain model when needed. Model only when the problem requires a complex solution or the team
is unsure of or new to the problem domain (for example, the team has never worked in finance).

Keep the Solution Simple and Your Code Boring

Keep your model simple and focused, and strive for boring plain code. Often teams quickly fall into
the trap of overcomplicating a problem. Keeping a solution simple does not mean opting for the
quick and dirty; it’s about avoiding mess and unnecessary complexity. Use simplicity during code
review or pair programming. Developers should challenge each other to ensure they are proving a
simple solution and that the solution is explicitly focused only on the problem at hand, not just a
general solution to a generalized problem.

140 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

Carve Out an Area of Safety

If you are working in a legacy codebase or are integrating with a legacy code, it is vital to ensure
that your code is not contaminated by the mess that already exists. (If there is mess; remember that
legacy doesn’t mean bad code!) It may be tempting to clean up the legacy codebase, but this is a
task that can quickly become time consuming and distract from your real goal of introducing new
functionality. Instead, lean on the anticorruption layer pattern to create a boundary between your
new code and the existing code. This protection boundary enables you to create a clean model that
is isolated from other teams’ influences.

Integrate the Model Early and Often

While modeling, it is important to validate and prove the model in code as early as possible.
Whiteboard drawings and cards are good, but working code is the only true measure of
progress. Working code means integrated code. Working code connects to databases and to user
interfaces; it proves the model from an end-to-end process.

Nontechnical Refactoring

Experienced developers are familiar with employing technical refactorings to increase the quality

of the software construction by migrating to well-known code organizing patterns. However, a
different type of refactoring is required to ensure a model communicates what it does clearly. It’s
important to reflect in code any domain knowledge breakthroughs that happen with domain experts
or indeed anyone working on the software product. Code within the domain model should be clear
and expressive.

A domain model starts out simple based on a shallow view of the domain, usually based on the
nouns and verbs of the requirement documentation or from initial discussions with domain experts.
However, as the depth of knowledge within the team grows through iterations, so should the
richness of the domain model. Even if the technical design of the code has been modified to increase
clarity, the names and methods of classes, along with the namespaces, should continue to be
updated to reflect the more insightful abstractions that are discovered through knowledge-crunching
sessions. This continued investment in the model helps keep it relevant and match the vision and
intent of the domain experts.

Decompose Your Solution Space

As your model grows, you will find ambiguity in language or overloaded terms, or you may just find
it difficult to manage due to its size. To make large and complex domain models simpler and easier
to maintain, divide by context based on natural language and invariants. Focus on minimizing the
coupling between contexts. Don’t strive for perfect code; strive for perfect boundaries. Bounded
context and aggregates are powerful concepts in DDD that enable complexity to be reduced. These
patterns help to manage complexity.

You should arrive at the strategic patterns of DDD due to complexity rather than up-front design.
Boundaries are hard to remove when they are defined so refactor toward them after several
iterations of development and when you are more knowledgeable within the problem domain. Favor
small modules of code with a focus on boundaries that you can replace rather than perfection
within those boundaries. Isolate and protect data.

Applying the Principles of DDD | 141

Rinse and Repeat
Figure 10-1 visualizes the steps of applying the principles and practices of DDD

Problem
Space
o Interesting conversations ~_
/ happen here \\
/ Stakeholders |
': Share ; !
Vision porng
4 /
!
ric /)

\
‘. Capture
\\behavior
N %
~ e
N 7 //
PO ,
el - ~ Decompose /
_ 7
- \ 7z
0 Development ~o problem space e
T / ~.Jeam .
N

Describe a model

using
ubiquitous language
Protect from)
’I
1
1
1
1
1

\
\
\
AN Domain
\\ Expert
AN Validate
N Decompose
N into /
N Experiements /
N
[’
/
. !
Solution /
Bounded ,’

S pace Contexts

Simple solutions for
simple problems

FIGURE 10-1: The process of DDD

A model is constantly evolving and changing; you cannot effectively utilize the practices and

patterns of DDD without embracing evolution. You should perform the steps presented in this
section constantly. Keeping the complexity of the software solution as low as possible is the goal of
DDD. All the principles and practices are aimed at this overall goal. As a developer, it is your job
to continuously challenge the effectiveness and simplicity of your model design as iterations change

and evolve it to meet the new behaviors of the stakeholders
A useful model is arrived at through hundreds of small refactorings. Adjustments to the model are

made constantly, with discoveries being unlocked through small transformations

142 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

During development, you may find that your assumption on the core domain may change. The
business may discover that it was wrong. Things change. Your boundaries will also change as you
realize that new invariants invalidate your design. With new features, you may find that ambiguity
creeps in. If it does, split the model and explicitly define the two parts in specific contexts.

Remember to start simple, and move toward the principles and practices when you absolutely need
them. Otherwise, you may very well overcomplicate a simple solution to a simple problem.

EXPLORATION AND EXPERIMENTATION

A rich and useful model is a product of exploration and creativity. Experimentation is about looking
at the code in a different way. If you find that coding is hard, you are probably doing something
wrong. Don’t just stop at the first useful model you produce. Because a model evolves over a number
of iterations, it is a good idea to delay refactoring until you know enough about the domain. Let the
model live a little and evolve. You won’t get it right the first time. Experimentation and exploration
fuel learning.

Challenge Your Assumptions

During every iteration, the development team must challenge its assumptions because additional
features may mean that a previously useful model is no longer fit for purpose. This skill enables your
software to be flexible and evolve as the product evolves, thus preventing it from turning into a Big
Ball of Mud (BBoM).

A team should not become too attached to a model based on the requirements from a first iteration.
Subsequent iterations may see the model become inadequate for the new feature requests. Teams
that are inflexible about evolving will soon find that the code works against them. When teams
follow a test-driven development methodology, they do not stop when the system is working.
Instead, they make a test pass and then refactor their design to make it more expressive. This is

by far the most important aspect of test-driven development and one that should be applied to
DDD. Refactoring when knowledge is gained helps to produce a model that is more expressive and
revealing.

Modeling Is a Continuous Activity

The activity of modeling happens whenever you need it; it is not a step in a project methodology.
You break out and collaborate with domain experts whenever it is required. If the area you are
working on is well understood, you may find that you don’t need to model at all. Don’t get too
attached to your software; be prepared to throw away your best code when the business model
changes. With each iteration comes a new challenge. You need to ensure that you refine and reshape
your model to meet the needs of new features and scenarios.

There Are No Wrong Models

There is no such thing as a stupid question or a stupid idea. Wrong models help to validate useful
ones, and the process of creating them aids learning. When working in a complex or core area of a

Making the Implicit Explicit | 143

product, teams must be prepared to look at things in a different way, take risks, and not be afraid of
turning problems on their head.

For a complex core domain, a team should produce at least three models to give itself a chance at
producing something useful. Teams that are not failing often enough and that are not producing
many ideas are probably not trying hard enough. When deep in conversation with a domain expert,
a team should not stop brainstorming at the first sign of something useful. Once the team gets

to a good place, it should wipe the whiteboard and start again from a different angle and try the
what-if route of investigation. When a team is in the zone with an expert, it should stay there until it
exhausts all its ideas.

LEARN TO UNLEARN

Don’t get attached to ideas; trial and error is required to reveal concepts in the
domain that will help you solve business problems. Code within the testing
namespace alongside the tests until you are happy with the design; you will be a
lot happier to spike solutions and throw away a useless model that you haven’t
committed to the application namespace.

Supple Code Aids Discovery

In Parts II, 111, and IV of this book, you will learn about patterns to organize your codebase to enable
it to change more effectively with new requirements. This supple code is derived from iterations

of small refactors. Constantly refactoring toward deeper insight helps lead to a supple design and
flexible code that is able to facilitate change and adapt to new features of the system as they are
added in each iteration. If a model is not supple, it is not useful. Martin Fowler states an important
modeling principle in his book Analysis Patterns: Reusable Object Models: “Design a model so that
the most frequent modification of the model causes changes to the least number of types.”

However, be careful of premature refactoring. Don’t refactor until you know enough about the
domain, and don’t become preoccupied with applying design patterns. Delaying refactoring can
also reveal which areas of the code change most often and why. With this knowledge, you can make
more informed design changes to your codebase.

MAKING THE IMPLICIT EXPLICIT

When teams are working deep within a codebase, they often ignore or dismiss logic statements as
simple artifacts of programming. These small implicit code blocks hide important details about
the domain, often disguising their importance. If these design decisions are not made explicit, they
cannot be added to the mental model, and further design discoveries will be harder.

As mentioned previously, delaying refactoring can reveal important details in the code and thus
important details of the model. If you find a code grouping that represents some kind of domain
logic that doesn’t have an explicit name, inform the domain expert, name the logic concept, and
wrap the code in the concept. It is vital to make implicit concepts explicit. Any decisions you make
in code need to be explicitly fed back to the domain expert and captured as a concept of the model.

144 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

Tackling Ambiguity

It’s often the things the domain experts don’t say or barely hint at that are the key to unlocking deep
discoveries within a model. These implicit concepts that may not appear important to domain experts
should be made explicit, be named, and be fully understood by the development team. For example,
consider an e-commerce site that prevents overseas customers from adding more than 50 of any one
item to their basket. Developers can easily implement this business rule, as can be seen in Listing 10-1.

LISTING 10-1: IMPLICIT LOGIC IN CODE

public class basket

{

private BasketItems items;

//

public void add(Product product)

{

if (basket_contains_an item for (product))

{
var item quantity = get item for (product).quantity ()
.add (new Quantity (1)) ;

if (item quantity.contains more than(new Quantity(50)))
throw new ApplicationException (
"You can only purchase 50 of a single product.");
else
get_item for (product).increase item quantity by(
new Quantity(1));

}

else
_items.Add (BasketItemFactory.create item for (product, this));

}

However, in future months, other developers may not understand why such a rule exists. Instead,
you should understand why the rule exists and name the portion of code accordingly. As it
transpires, suppliers enforce such a rule to prevent sites acting as wholesalers. With this knowledge,
you can make the code explicitly reveal this rule by wrapping it in a class that indicates a deeper
insight and understanding of the domain. This refactoring is seen in Listing 10-2.

LISTING 10-2: EXPLICIT LOGIC IN CODE
public class basket
{

private BasketItems _items;

/7

public void add(Product product)

Making the Implicit Explicit | 145

if (basket contains_an item for (product))

{

var item quantity = get item for (product).quantity ()
.add (new Quantity(1));

if (_over seas selling policy.is satisfied by(item quantity))
get_item for(product).increase item quantity by (
new Quantity(1l));
else
throw new OverSeasSellingPolicyException (
string.format (
"You can only purchase {0} of a single product.",
OverSeasSellingPolicy.quantity threshold)) ;

}

else
_items.Add (BasketItemFactory.create item for (product, this));

}

public class OverSeasSellingPolicy

{

public static Quantity quantity threshold = new Quantity(50);

public bool is satisfied by (Quantity item quantity, Country country)

{
if (item quantity.contains more than(quantity threshold))
return false;
else
return true;

Developers should watch for ambiguity or inconsistency in code or in the language of a domain
expert. You should also ensure that you pay particular attention to the language of other team
members when discussing the domain model. Always validate assumptions about the language and
details of the model by talking to domain experts. Validate aloud, and confirm your language and
design decisions with linguistic consistency. If a domain expert doesn’t say it, it shouldn’t be in the
language or codebase. If a term in the model no longer makes sense or is not useful, remove it. Keep
your language small and focused. Domain experts should object to inadequate terms or structure in
the language or model.

Give Things a Name

If domain experts talk about it, make it explicit. If domain experts hint at a concept, make it
explicit. If you talk about something that puzzles domain experts, maybe you have misunderstood
something they have said and you need to work on your UL. Give things a name, and if you can’t
think of a good name, defer it and call it the blue policy until you can think of something more
meaningful.

A domain model should communicate the intent of the business. Ensure that you take care in
naming all methods and properties of your classes. Try to describe the behaviors by involving the

146 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

UL. Don’t leave your code design up to interpretation. Help yourself and other developers by writing
code that is insightful, revealing the rich language of the domain.

A PROBLEM SOLVER FIRST, A TECHNOLOGIST SECOND

A software developer is primarily a problem solver who utilizes technology to implement a solution.
Developers are fantastic at educating themselves on technology and project methodologies; however,
decomposing a problem and being able to distill what is important from what is not will enable a
good developer to become a great one. You should spend as much time in the problem space as you
do in the solution space.

Just as a useful model is derived over a series of iterations, so too must a problem space be refined
to reveal the true intent behind a stakeholder’s vision. Listening and drawing the why as well as
the what and when from stakeholders is a skill that developers should practice just as they practice
coding katas.

Code is a product of DDD, not the process; you can solve problems without having a technical
solution.

Don’t Solve All the Problems

All problems are not created equal; some are complex and are of little business value, so it makes
no sense to waste effort in finding automated solutions for them. Complex edge cases do not always
need automated solutions. Humans can manage by exception. If a problem is complex and forms
an edge case, speak to your stakeholder and domain expert about the value of automating it. Your
effort could be better served elsewhere, and a human might better handle this exception.

HOW DO | KNOW THAT | AM DOING IT RIGHT?

Unlike becoming a scrum master, there is no certificate awarded when applying the principles and
practices of DDD. Your reward from your investment will result in a product that is easily understood,
straightforward to maintain, meets the expectations of your stakeholders, and is fun to work on.

You will also find that your team members understand the business better. You will notice that they
will be able to talk more fluently with stakeholders and offer solutions to problems that the business
didn’t know it had or maybe did not have a solution for.

Aligning a team and a business ensures everyone in the organization understands what value means.
Teams will no longer spend time on overcomplicated, technical, influenced solutions that use the
same architecture and effort, striving for code perfection even for areas that are of little importance
to the business. They will instead be able to decompose problems and work with the business to
focus on value and spend time in this area, proving good enough, simple solutions to any supporting
or generic domains. They will understand where the true value is and where they can make a
difference.

Teams will focus on the problem domain, understanding it rather than focusing only on the technical
solution. They will spend increased time on the what, why, and when, leaving the how to later.

The Salient Points | 147

Good Is Good Enough

Teams that are aligned with the philosophy of DDD focus more on the bigger picture and
understand where to put the most effort. They will not apply the same architecture to all parts of a
solution, and they will not strive for perfection in areas of little value. They will trade isolated and
working software for unnecessary elegance and gold plating.

Only the core domains need to be elegant due to complexity or importance. This is not to say that
all other code should be poorly written, but it should be isolated, defined by a boundary, and expose
behavior to support the core domain.

Practice, Practice, Practice

Software development is a learning process, and so is DDD. If you want to be good at anything,
you need to practice, practice, practice. If you want to be a great developer rather than a good one,
you need to show passion for the problem and passion for the solution. To apply the principles of
DDD, you need a driven and committed team—a team committed to learning about its craft and
the problem domains it works in. Passion lies within all of us, and if you feel value in the practices
of DDD, it is up to you to inspire your team and become an evangelist. Passion is contagious; if you
commit to spend time with your domain experts to understand a domain at a deeper level and can
show how this results in a more expressive codebase then your team will follow.

Many developers are turned off when working in a brownfield environment because of fear of
having to work on another developer’s codebase. When working on enterprise systems, you have to
integrate or work on brownfield environments at some point. Great developers excel at introducing
new features into an existing codebase in a safe and maintainable manner.

THE SALIENT POINTS

> Don’t sell DDD as a silver bullet. Focus on the alignment with the business and learning
more about the domain you are building software for.

> Apply the principles of DDD only when they are needed. Don’t use them as a tool for all
problems.

> Decompose the problem space and focus on the core domain. All interesting conversations
will happen here. This is where you apply the principles of DDD to maximize value and
where you should apply the most effort.

> Before modeling a solution, capture the reality of the landscape, and understand other
models and contexts in play. Who owns these? What relationships do you have with them?
What and how is data exchanged?

> Build a model to satisfy feature scenarios. Start with the most risky or complex. Utilize your
domain expert’s time here, and don’t bother him with simple data management.

> If you are working in a legacy environment, ensure that you protect yourself from external
code, don’t trust anyone, and enforce your borders. Carve out an area to add new
functionality. Don’t try to clean up everything.

148 | CHAPTER 10 APPLYING THE PRINCIPLES, PRACTICES, AND PATTERNS OF DDD

> Constantly integrate, refine, and challenge your model. Don’t stop at your first good idea.
Explore and experiment, and validate good ideas by trying new models and solutions. Have
at least three useful models.

> Don’t assume anything, keep things simple, delay large design decisions, and wait for
complexity or new behaviors to challenge your solution. Then refactor toward strategic
patterns when you need to.

> Modeling is a team activity, and one that should happen whenever the team is stuck,
encounters an area it is unsure of, or needs clarification. It should not be confined to a
predefined step in a project time line.

> The model and the language evolve together. A model that cannot be communicated and
talked about with ease will have limited usefulness and will be hard to evolve.

PART II

Strategic Patterns:
Communicating Between
Bounded Contexts

» CHAPTER 11: Introduction to Bounded Context Integration

» CHAPTER 12: Integrating via Messaging

» CHAPTER 13: Integrating via HTTP with RPC and REST

11

Introduction to Bounded
Context Integration

WHAT'S IN THIS CHAPTER?

> How to integrate bounded contexts that form a distributed system
> Fundamental challenges inherent to building distributed systems

> Understanding how the principles of Service Oriented Architecture
(SOA\) can help to build loosely coupled bounded contexts and
independent teams

> Addressing nonfunctional requirements while keeping an explicit
event-driven domain model using reactive DDD

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
domaindrivendesign on the Download Code tab. The code is in the Chapter 11 download
and individually named according to the names throughout the chapter.

After identifying the bounded contexts in your system (as discussed in Chapter 6,
“Maintaining the Integrity of Domain Models with Bounded Contexts,” and Chapter 7,
“Context Mapping”), the next step is to decide how you will integrate them to carry out full
business use cases. One of the big challenges you face in this process is successfully designing
a robust distributed system. For example, each step of placing an order, billing the customer,
and arranging shipping may belong to a different bounded context running as a separate

piece of software on a separate physical machine or cloud instance. In this chapter, you learn
about fundamental concepts in distributed computing that allow you to retain explicit domain
concepts while gracefully dealing with nonf